

EO4GEO training: Fast disaster response – satellite technologies for surface displacement monitoring GNSS July 12th – 14th, 2021

University of Zagreb – Faculty of Geodesy

E04GEO training 13 & 14 July 2021

Co-funded by the Erasmus+ Programme of the European Union

UN4DRR

Outline:

- Motivation instead of introduction
- Global Navigation Satellite System (GNSS) overview & current status
- Global, Continental and Regional (State) Networks
- Error sources
- Measuring methods
- Precise Point Positioning (PPP)
- **Case studies:**
- Zagreb (22nd March 2020)
- Petrinja (28th & 29th December 2020 6th January 2021)

Motivation instead of introduction

Felt reports received for M5.4 earthquake in CROATIA on 2020-03-22 05:24:02 UTC

Zagreb earthquake, 22nd March 2020

Source	Croatian Seismological Survey (CSS)
Latitude	45.884°
Longitude	16.013°
Depth	8.3 km
Magnitude	M _L = 5.5
Time of origin	05:24:03.1 UTC

Zagreb centre, 22nd March 2020

GEOF, GRAD, Af: 22nd March 2020

Motivation instead of introduction

Petrinja earthquake, 29th December 2020

Source	EMSC
Latitude	45.42°
Longitude	16.21°
Depth	10 km
Magnitude	$M_{w} = 6.4$
Time of origin	11:19:54.1 UTC

4GEO training 13 & 14 July 2021

https://www.emsc-csem.org/#2

Petrinja centre, 29th December 2020

Global Navigation Satellite System (GNSS) – overview & current status

Global Positioning System (GPS)

- Position Velocity Timing (PVT)
- Position Navigation Timing (PNT)
- 1973 system design
- 1978 launched the first Block-I satellite
- 1993 IOC (Initial Operational Capability)
- 17th July 1995 FOC (*Full Operational Capability*):
 24 operational satellites
- CDMA (Code Division Multiple Access)
- GPS Time (6th January 1980),
 GPS Week (86 400 x 7 = 604 800 s)
- Segments: Space, Control, User

E04GEO training 13 & 14 July 2021

GPS Calendar 2021

July						
Gregor. Date	Day Num- ber	Week / Day	Modif. Julian Day			
11 Sun	192	2166 0	59 406			
12 Mon	193	1	407			
13 Tue	194	2	408			
14 Wed	195	3	409			
15 Thu	196	4	410			
16 Fri	197	5	411			
17 Sat	198	6	412			
18 Sun	199	2167 0	59 413			

GPS

- 6 Orbital planes
- 24 Satellites + Spare
- 55[°] Inclination Angle
- Altitude 20,200km

Space segment:

- 6 orbital planes
- almost circular orbits at altitude approx. 20200 km
- orbit inclination: 55°
- Orbital period: ½ sideral day: 11h 58min
- Current constellation: 31 operational satellites E04GEO training 13 & 14 July 2021

LEGACY S	ATELLITES		MODERNIZED SATELLITES	
75				
BLOCK IIA	BLOCK IIR	BLOCK IIR-M	BLOCK IIF	GPS III/IIIF
0 operational	8 operational	7 operational	12 operational	4 operational
 Coarse Acquisition (C/A) code on L1 frequency for civil users Precise P(Y) code on L1 & L2 frequencies for military users 7.5-year design lifespan Launched in 1990-1997 Last one decommissioned in 2019 	 C/A code on L1 P(Y) code on L1 & L2 On-board clock monitoring 7.5-year design lifespan Launched in 1997-2004 	 All legacy signals 2nd civil signal on L2 (L2C) LEARN MORE → New military M code signals for enhanced jam resistance Flexible power levels for military signals 7.5-year design lifespan Launched in 2005-2009 	 All Block IIR-M signals 3rd civil signal on L5 frequency (L5) <i>LEARN MORE</i> → Advanced atomic clocks Improved accuracy, signal strength, and quality 12-year design lifespan Launched in 2010-2016 	 All Block IIF signals 4th civil signal on L1 (L1C) <i>LEARN MORE</i> → Enhanced signal reliability, accuracy, and integrity No Selective Availability <i>LEARN MORE</i> → 15-year design lifespan IIIF: laser reflectors; search & rescue payload First launch in

https://www.gps.gov/systems/gps/space/

GPS III

GPS III will meet users' emerging needs and respond to tomorrow's threats with improved safety, signal integrity and unbelievable accuracy.

- On contract for 10 GPS III satellites
- Doubled design life of 15 years
- 3 times more accurate
- 8 times improved anti-jam capability
- L1C Global Navigation Satellite Systems (GNSS) compatibility
- Search and Rescue, Laser Reflector Array and Digital Payload at SV 11+
- Proven compatible with the current GPS constellation and the OCX ground control segment
- Designed to evolve to incorporate new technology and changing mission needs

LOCKHEED MARTIN

Global Positioning System (GPS)

- Latest launch: 17th June 2021, Cape Canaveral, Florida
- GPS III-SV05 Neil Armstrong
- Lochheed Martin
- Space X Falcon 9

https://www.space.com/spacex-military-gps-iii-sv05-satellite-launch-rocket-landing?jwsource=cl

GPS CONSTELLATION STATUS, 11.07.21

Total satellites in constellation	32 SC
Operational	30 SC
In commissioning phase	1 SC
In maintenance	1 SC
In decommissioning phase	127

Plane	Slot	PRN	NORAD	Type SC	Launch date	Input date	Outage date	Life-time (months)	Notes		1	2	28474	II-B	06.11.04	22.11.04	199.7	
	1	24	38833	II-F	04.10.12	14.11.12		103.9			2	1	37753	II-E	16.07.11	14.10.11	117.0	
	2	31	29486	IIR-M	25.09.06	13.10.06		177.0		D	3	21	27704	II-R	31.03.03	12.04.03	219.1	
	3	30	39533	II-F	21.02.14	30.05.14		85.4			4	6	39741	II-F	17.05.14	10.06.14	85.1	
A	4	7	32711	IIR-M	15.03.08	24.03.08		159.7			5	11	48859	III-A	17.06.21			In commissioning phase
										6	18	44506	III-A	22.08.19	01.04.20	15.3		
											1	3	40294	II-F	29.10.14	12.12.14	79.0	
	1	16	27663	II-R	29.01.03	18.02.03		220.9			2	10	41019	II-F	30.10.15	09.12.15	67.1	
	2	25	36585	II-F	28.05.10	27.08.10		130.6			3	5	35752	IIR-M	17.08.09	27.08.09	142.6	
										E	4	20	26360	II-B	11.05.00	01.06.00	253.5	
В	4	12	29601	IIR-M	17.11.06	13.12.06		175.0			6	20	AFORA		20.00.00	01 10 00	0.2	
	5	26	40534	U.E.	25.03.15	20.04.15		74.8			U	20	43034	111-A	30.00.20	01.10.20	5/3 (
	6	14	46826	III-A	05.11.20	02.12.20		7.3			6	22	28129	II-R	21.12.03	12.01.04	210.1	
	6		34661	IIH-M	24.03.09		0.				1	32	41328	II-F	05.02.16	09.03.16	64.1	
	1	29	32384	IIR-M	20.12.07	02.01.08	ĺ.	162.4			2	15	32260	IIR-M	17.10.07	31.10.07	164.4	
	2	27	39166	II-F	15.05.13	21.06.13		96.7			3	9	40105	ILE	02.08.14	17.09.14	81.8	
	3	8	40730	II-F	15.07.15	12.08.15		71.0			4	4	43873	III-A	23,12,18	13.01.20	17.9	
L	4	17	28874	IIR-M	26.09.05	13.11.05		188.0						\bigcirc		CORT DESCRIPTION	11.650	
	5	19	28190	II-R	20.03.04	05.04.04		207.3			6	13	24876	II-B	23.07.97	31.01.98	281.5	

https://www.glonass-iac.ru/en/GPS/

Global Positioning System (GPS)

Keplerian elements:

a: Semi-major axis of orbital ellipse
e: Numerical eccentricity of the orbit
i: Inclination of orbital plane
Ω: Right ascension of Ascending Node (RAAN)
ω: Argument of perigee
v: True anomaly
u: Argument of latitude (u = v+ ω)

GPS control segment consists of a global network of ground facilities that track the GPS satellites, monitor their transmissions, perform analyses, and send commands and data to the constellation.

https://www.gps.gov/systems/gps/control/

E04GEO training 13 & 14 July 2021

Master Control Station-MCS

GPS Constellation & Frequency bands

Parameter	GPS
Orbital Period (MEO)	11hrs 58min
Orbital Height (MEO)	22,200 Km
Inclination (MEO)	55°
Number of Orbital Planes (MEO)	6
Number of satellites	24 MEOs + 6 spares
Reference frame	WGS-84
Reference time	GPS Time (GPST)

GPS

L1 C

LZC

L5

GNSS User Technology Report

European Global Navigation Satellite Systems Agency

Global Positioning System (GPS)

Signal-in-Space (SIS)

E04GEO training 13 & 14 July 2021 https://www.gps.gov/governance/advisory/meetings/2014-06/bailey.pdf

GPS satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

- Geometrical - Time - Position (3D) - Horizontal - Vertical

GPS satellites visibility, Zagreb, 13th July 2021, 09:30 (UTC+2)

$$\frac{\text{VDOP}}{\text{HDOP}} = \frac{1.92}{1.1} = 1.75$$

Heights determined with GPS are 1.5 – 2 times worse than position

GLONASS - Globalnaja navigacionaja sputnikovaja sistema

- 1982 launched the first satellite
- 1996 FOC (Full Opetational Capability) 24 satellites
- System degradation: in 2002 there were only 7 operational satellites
- 2011 FOC reestablished
- 3 orbital planes
- Orbital altitude 19 130 km
- Orbit inclination 64.8°
- Orbital period 11h 15min
- PZ-90.11
- UTC(SU)
- FDMA Frequency Division Multiple Access

CAPABILITIES	GLONASS	GLONASS-M	GLONASS-K	GLONASS-K2
Time of Deployment	1982-2005	2003-2016	2011-2018	2017+
Status	Decommissioned	In use	Design maturation based on in-orbit validation	In development
Nominal Orbit Parameters		Circular Altitude - 1 Inclination - Period - 11	9,100 km 64,8° h 15 min 44 sec	
Number of Satellites in the Constellation (Used for Navigation)			24	
Number of Orbital Planes			3	
Number of Satellites in a Plane			8	
Design Lifetime, years	3.5	7	10	10
Mass, kg	1500	1415	935	1600
Clock Stability, as per Specification/Observed	5*10 ⁻¹³ / 1*10 ⁻¹³	1*10 ⁻¹³ / 5*10 ⁻¹⁴	1*10 ⁻¹³ /5*10 ⁻¹⁴	1*10 ⁻¹⁴ / 5*10 ⁻¹⁵
Signal Type	FDMA	FDMA (+CDMA for SVs 755-761)	FDMA and CDMA	FDMA and CDMA

https://www.glonass-iac.ru/en/guide/index.php

Both satellites are transmitting on the same frequency

GLONASS

Och clot	Orb.	DE chol	# 60	Launchod	Operation	Operation	Life-time	Satell	te health status	Commonte
Uru, aluc	pl.		# 00	Launcheu	begins	ends	(months)	In almanac	In ephemeris (UTC)	Gunnients
1	1	01	730	14.12.09	30.01.10		139.0	+	+ 10:38 11.07.21	In operation
2	1	-4	747	26.04.13	04.07.13		98.6	÷	+ 10:38 11.07.21	In operation
3	1	05	744	04.11.11	08.12.11		116.3	+	+ 10:38 11.07.21	In operation
4	1	06	759	11.12.19	03.01.20		19.0	+	+ 10:38 11.07.21	In operation
5	1	01	756	17.06.18	29.08.18		36.8	+	+ 10:38 11.07.21	In operation
6	1	-4	733	14.12.09	24.01.10		139.0	+	+ 10:38 11.07.21	In operation
7	1	05	745	04.11.11	18.12.11		116.3	+	+ 10:38 11.07.21	In operation
8	1	06	743	04.11.11	20.09.12		116.3	+	+ 10:38 11.07.21	In operation
9	2	-2	702	01.12.14	15.02.16		79.4	+	+ 10:38 11.07.21	In operation
10	2	-7	723	25.12.07	22.01.08		162.6	+	+ 10:38 11.07.21	In operation
11	2	00	705	25.10.20			8.5	2	- 10:38 11.07.21	Flight Tests
12	2	-1	758	27.05.19	22.06.19		25.5	+	+ 10:38 11.07.21	In operation
13	2	-2	721	25.12.07	08.02.08		162.6	+	+ 10:38 11.07.21	In operation
14	2	-7	752	22.09.17	16.10.17		45.6	+	+ 10:38 11.07.21	In operation
15	2	00	757	03.11.18	27.11.18		32.3	+	+ 10:38 11.07.21	In operation
16	2	-1	736	02.09.10	04.10.10		130.4	÷	+ 10:38 11.07.21	In operation
17	3	04	751	07.02.16	28.02.16		65.1	+	+ 10:38 11.07.21	In operation
18	3	-3	754	24.03.14	14.04.14		87.6	+	+ 10:38 11.07.21	In operation
19	3	03	720	26.10.07	25.11.07		164.6	+	+ 10:38 11.07.21	In operation
20	3	02	719	26.10.07	27.11.07		164.6	+	+ 10:38 11.07.21	In operation
21	3	04	755	14.06.14	03.08.14		85.0	+	+ 10:38 11.07.21	In operation
22	3	-3	735	02.03.10	28.03.10		136.4	+	+ 10:38 11.07.21	In operation
23	3	03	732	02.03.10	28.03.10		136.4	+	+ 10:38 11.07.21	In operation
24	3	02	760	16.03.20	14.04.20		15.8	÷	+ 10:38 11.07.21	In operation
15	2		716	25.12.06	12.10.07	24.11.18	174.6			Spares
11	2		753	29.05.16	27.06.16	19.11.20	61.4			Maintenance
20	3	-6	701	26.02.11			124.5	í i		Flight Tests

https://www.glonass-iac.ru/en/GLONASS/ E04GEO training 13 & 14 July 2021

GLONASS CONSTELLATION STATUS, 11.07.2021

Total satellites in constellation	27 SC
Operational	23 SC
In commissioning phase	2
In maintenance	1 SC
Under check by the Satellite Prime Contractor	2
Spares	1 SC
In flight tests phase	2 SC

Launching of GLONASS-K, 25th October 2020 on Soyuz-2 rocket from the Plesetsk cosmodrome

GLONASS control segment

http://www.navipedia.net/index.php/GLONASS_Ground_Segment

- System Control Centre (Kraznoznamensk -Moscow)
- Central Clock (Schelkovo)
- 5 Telemetry, Tracking and Command – TT&C
- 3 Upload Stations ULS
- 2 Laser Ranging Stations (SLR)
- 10 Monitoring and Measuring Stations (MS)

additional Tracking Stations outside Russian territory

GLONASS Constellation & Frequency bands

Parameter	GLONASS
Orbital Period (MEO)	11hrs 15mins
Orbital Height (MEO)	19,100 Km
Inclination (MEO)	64,8°
Number of Orbital Planes (MEO)	3
Number of satellites	24 MEOs + 2 spares
Reference frame	PZ-90
Reference time	GLONASS Time (GLONASST)

GNSS User Technology Report

European Global Navigation Satellite Systems Agency

		L1	L2	L3	L1, L2	Future	Status
Six a	"Glonass"	L1OF, L1SF	L2OF, L2SF	•			Done
4	"Glonass-M"	L10F, L1SF	L2OF, L2SF		•		Done
A.	"Glonass-K1"	L10F, L1SF	L2OF, L2SF	L3OC test			From first test sat (2010 r.)
	"Glonass-K2"	L1OF, L1SF	L2OF, L2SF	L3OC	L1OC, L1SC, L2SC		From #3 sat Glonass-K
	"Glonass-KM"	L1OF, L1SF	L2OF, L2SF	L3OC	L1OC, L1SC, L2SC	L3SC, L10CM, L20C,	Under developm. After 2015 r

Power Spectral Density (PDS)

	L1 FDMA
	L1 CDMA
CLONING	L2 FDMA
GLONASS	L2 CDMA
	L3 CDMA
	L5 CDMA

GLONASS satellites visibility: Zagreb, 13th July 2021

Trimble.

GLONASS satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

GLONASS satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

Galileo

- Galileo di Vincenzo Bonaiuti de' Galilei (Pisa, 1564 – Arcetri, 1642)
- System financed by EC (European Commission)
- System developed by ESA (European Space Agency)
- First GNSS under civilian control
- 27 satellites + 3 spares
- 3 almost circular orbit at altitude 23222 km
- Orbit inclination: 56°
- Orbital period: 14h 04min
- Currently Galileo system is under development

Galileo 3 Orbital planes 27 Satellites + 3 spares 56* Inclination angle Altitude 23,222 km

Galileo Control Segment

- 2 Control Centers
- Galileo Sensor Stations (GSS),
- Galileo Uplink Stations (ULS),
- Telemetry, Tracking & Control stations4(TT&C)

Galileo Ground Segment

Architecture

Galileo Service Facilities

Galileo development:

- GioveA (2005.) i GioveB (2008.) Galileo In Orbit Validation Elements
- 2005-2014: IOV phase
- from 2014 on: FOC phase

12th March 2013 • first position fix

GALILEO Initial services:

- Declaration on 15th December 2016
- Galileo satellites (Space Segment) and infrastructure on Earth (Control Segment) were ready for the provision of 3 services:
 - Open Service
 - Public Regulated Service
 - Search and Rescue Service
- Initial services were declared with 18 satellites in constellation:
 - 12 operational satellites
 - 4 being deployed (in-orbit-testing)
 - 2 satellites launced in eccentric orbit (EO)

Galileo services:

once fully operational, Galileo will offer four high-performance services worldwide:

• Open Service (OS): Galileo open and free of charge service set up for positioning and timing services. In the future, the Galileo Open Service will also provide Navigation Message Authentication, which will allow the computation of the user position using authenticated data extracted from the navigation message.

• **High Accuracy Service (HAS)**: A service complementing the OS by providing an additional navigation signal and added-value services in a different frequency band. The HAS signal can be encrypted in order to control the access to the Galileo HAS services.

- Public Regulated Service (PRS): Service restricted to government-authorised users, for sensitive applications that require a high level of service continuity.
- Search and Rescue Service (SAR): Europe's contribution to COSPAS-SARSAT, an international satellite-based search and rescue distress alert detection system.

Latest launching of GALILEO satellites 23-24-25-26, 25th July 2018, Kourou, French Guiana

https://www.esa.int/ESA Multimedia/Videos/2018/07/Highlights of Galileo 23 26 launch#.YOrmSRLnhbB.link

E04GEO training 13 & 14 July 2021

For more information, visit us on arlanespace.com

Warianeso

30 sec. of propu

Galileo frequencies

- E1 ... 1575,42 MHz
- E6 ... 1278,75 MHz (Commercial Service)
- E5a ... 1176,45 MHz
- E5b ... 1207,14 MHz
- E5 AltBOC ... 1191.795 MHz (Alternative BOC modulation)

http://galileognss.eu/galileo-frequency-bands/

Galileo Constellation & Frequency bands

Parameter	Galileo		
Orbital Period (MEO)	14hrs 04mins		
Orbital Height (MEO)	23,222 Km		
Inclination (MEO)	56°		
Number of Orbital Planes (MEO)	3		
Number of satellites	24 MEOs + 6 spares		
Reference frame	GTFR		
Reference time	Galileo System		

GNSS User Technology Report

European Global Navigation Satellite Systems Agency

Lower L-band

E5a E5b

E6

1575.42 MHz E1₀, E1₀ CBOC(6,1,1/11) E1,

Upper L-band

E1

Power Spectral Density (PDS)

Signal	Carrier Frequency (MHz)	Receiver Reference Bandwith (MHz)		
E1	1575.42	24.552		
E6	1278.75	40.92		
E5	1191.795	51.15		
E5a	1176.45	20.46		
E5b	1207.14	20.46		

Galileo Signals Carrier Frequency and Bandwith

Galileo – current constalletion

• 26 satellites in constellation (22 usable (operational), 1 Not Available, 3 Not Usable)

Satellite Name ¹	SV ID ²	Clock ³	Status ⁴	Active NAGU ⁵	NAGU Type ⁶	NAGU Subject ⁷				
GSAT0101	E11	RAFS	USABLE						(
GSAT0102	E12	PHM	USABLE							Conder
GSAT0103	E19	PHM	USABLE				1	GSAT0209	GSAT0209 E09	GSAT0209 E09 PHM
GSAT0104	E20	RAFS	NOT AVAILABLE	2014014	UNP_UNUFN	UNAVAILABLE FROM 2014-05-27 UNTIL FURTHER NOTICE		GSAT0210	GSAT0210 E01	GSAT0210 E01 PHM
GSAT0201	E18	PHM	NOT	2021008	GENERAL	GSAT0201 AND GSAT0202		GSAT0211	GSAT0211 E02	GSAT0211 E02 PHM
			USABLE			UNAVAILABLE		GSAT0212	GSAT0212 E03	GSAT0212 E03 PHM
GSAT0202	E14	PHM	NOT USABLE	2021008	GENERAL	GSAT0201 AND GSAT0202 UNAVAILABLE		GSAT0213	GSAT0213 E04	GSAT0213 E04 PHM
CEATO202	F24	DUM						GSAT0214	GSAT0214 E05	GSAT0214 E05 PHM
GSAT0203	E20	РНМ	USABLE					GSAT0215	GSAT0215 E21	GSAT0215 E21 PHM
GSAT0204	E22	RAFS	NOT USABLE	2017045	GENERAL	GSAT0204 REMOVED FROM ACTIVE SERVICE ON 2017-12-08		GSAT0216	GSAT0216 E25	GSAT0216 E25 PHM
						UNTIL FURTHER NOTICE FOR CONSTELLATION MANAGEMENT PLIRPOSES		GSAT0217	GSAT0217 E27	GSAT0217 E27 PHM
GSAT0205	E24	PHM	USABLE			TOR COLS		GSAT0219	GSAT0219 E36	GSAT0219 E36 PHM
GSAT0206	E30	PHM	USABLE					GSAT0220	GSAT0220 E13	GSAT0220 E13 PHM
GSAT0207	E07	PHM	USABLE					GSAT0221	GSAT0221 E15	GSAT0221 E15 PHM
GSAT0208	E08	PHM	USABLE					GSAT0222	GSAT0222 E33	GSAT0222 E33 PHM

E04GEO training 13 & 14 July 2021 https://www.gsc-europa.eu/system-service-status/constellation-information PHM = Passive Hydrogen Maser, RAFS = Rubidium Atomic Frequency Standard.

Change selection Satellites: 18/129 http://www.gnssplanningonline.com/ Satellites Settings System: active Selected Healthy Pápa .0 Latitude: N 45° 48' 30,756" Sárvár GPS 0 31 + × ,Várpal Ajka Graz -Feldbach GLONASS "Tapolca "Siófok 0 23 0 Spittal an E 15° 57' 54.8642" × Longitude: Sankt Veit oder Drau an der Glan Villach Galileo 18 18 ~ Maribor Height: 165 m Nagykanizsa Dombe BeiDou 0 48 × Ivanec SLOVENIA **Elevation cutoff:** 10 • Tavagnacco Pecs Vrhnika QZSS 0 Gorizia × 4 Trebnje nliano Zagreb Virovitica Day: 13/07/2021 Bibione Trieste .Kocevje) Te. -2.-. ce Start time: 00:00 ✓ UTC +02:00 ◬ A E01 ~ E11 E26 \checkmark Healthy Healthy Unhealthy Poreč Period [hours]: 24 ~ Pula ▲ ~ E02 Healthy ~ Healthy ✓ Healthy (UTC+01:00) Sarajevo, Skopje, Warsaw, Zagreb 🐱 Time zone: ~ ◬ E13 A **~** Unhealthy E03 Healthy E30 Healthy Healthy 0 Health status: Eccentricity: 0.000031 ▲ A ✓ E15 ~ E31 Healthy Healthy Unhealthy Semimajor axis: 29,601,216.5 m Right ascension of 17.556° ascending node: ◬ E19 ◬ E33 ~ ~ ~ E05 Healthy Healthy Healthy Argument of perigee: -97.581° -104.200° ▲ Mean anomaly: ~ E07 Healthy E21 Unhealthy ▲ ✓ E36 Healthy Inclination: 56.055° ~ ▲ Healthy ◬ E08 Healthy ~ E24 Rate of right ascension: -0.0002934 °/sec * 10³ Satellite clock offset: -1125335.7 nsec ◬ ◬ ✓ E09 Healthy ✓ E25 Healthy

Satellite Selection

A

◬

◬

◬

▲

Galileo satellites visibility: Zagreb, 13th July 2021

E04GEO training 13 &

Trimble.

GNSS Planning Online

Satellite clock drift:

-0.01 nsec/s

Galileo satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

E04GEO training 13 & 14 July 2021

Galileo satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

- 1983 concept of chinese regional navigational system with 3 geostationary satellites (GEO)
- 2003 system BeiDou-1 deployed
- 2006 official announcement of development
 2nd generation of national GNSS including constellation of satellites in MEO orbits - BeiDou-2 (or Compass)
- 2012 system declared operational in Asia-Pacific region
 - 31th July 2020 BDS-3, the global version of the
 BeiDou Navigation Satellite System (BDS), was
 formally commissioned, marking the completion of its three-step
 development process
- BeiDou System Time (BDT)
- CGCS2000 (China Geodetic Coordinate System 2000)

In Chinese, the Big Dipper Constellation is known as BeiDou NovAtel Inc. (2015): An Introduction to GNSS

Satellites	5 GEO	3 IGSO	27 ME0
Orbital Planes	-	2 <u>012</u>	3
Orbital Inclination	-	55 degrees	55 degrees
Orbit Radius	35,787 km	35,787 km	21,528 km

- 35 satellites in constellation
 - ✓ 5 BeiDou- GEO
 - (58.75° E, 80° E, 110.5° E, 140° E and 160° E);
 - ✓ 27 BeiDou- MEO satellites (orbital period 12h 53min; inclination 55°)
 - ✓ 3 BeiDou- IGSO (Inclined GeoSynchronous Orbit)

BeiDou 6 Orbital planes 35 Satellites + 5 GEO + 27 MEO + 3 IGSO 55° Inclination angle Altitude 38,300 km, 21,500 km

- Latest launch of BDS satellite 23rd June 2020
- Xichang Satellite Launch Center in southwest China's Sichuan Province
- Long March-3B carrier rocket
- completion of the deployment of BDS-3 global navigation system

https://www.gpsworld.com/china-completes-beidou-3worldwide-navigation-constellation/

BEIDOU CONSTELLATION STATUS 11.07.21

Total satellites in constellation	49
SV is included in operational orbital constellation	44
SV is not included in operational orbital constellation	5

BEIDOU CONSTELLATION STATUS 11.07.21

Satellite Number	NORAD	Satellite Name	Type of system	Launch date	Life-time (days)	Notes
C01	44231	GEO-8	BDS-2	17.05.19	786	In operation
C02	38953	GEO-6	BDS-2	25.10.12	3181	In operation
C03	41586	GEO-7	BDS-2	12.06.16	1855	In operation
C04	37210	GEO-4	BDS-2	01.11.10	3905	In operation
C05	38091	GEO-5	BDS-2	25.02.12	3424	In operation
C06	36828	IGSO-1	BDS-2	01.08.10	3997	In operation
C07	37256	IGSO-2	BDS-2	18.12.10	3858	In operation
C08	37384	IGSO-3	BDS-2	10.04.11	3745	In operation
C09	37763	IGSO-4	BDS-2	27.07.11	3637	In operation
C10	37948	IGSO-5	BDS-2	02.12.11	3509	In operation
C11	38250	MEO-3	BDS-2	30.04.12	3359	In operation
C12	38251	MEO-4	BDS-2	30.04.12	3359	In operation
C13	41434	IGSO-6	BDS-2	30.03.16	1929	In operation
C14	38775	MEO-6	BDS-2	19.09.12	3217	In operation
C16	43539	IGS0-7	BDS-2	10.07.18	1097	In operation

SU DUS-S IVIEU Salennes	30	BDS-3	MEO	satel	lites
-------------------------	----	--------------	-----	-------	-------

https://www.glonass-iac.ru/en/BEIDOU/index.php

	C61	45807	GEO-3	BDS-3	23.06.20	383	Not in operational orbital constellation
_	C58	40748	MEO-2S	BDS-3S	25.07.15	2178	Not in operational orbital constellation
	C57	40749	MEO-1S	BDS-3S	25.07.15	2178	Not in operational orbital constellation
	C56	40938	IGSO-2S	BDS-3S	30.09.15	2111	Not in operational orbital constellation
	C31	40549	IGSO-1S	BDS-3S	30.03.15	2295	Not in operational orbital constellation
	C60	45344	GEO-2	BDS-3	09.03.20	489	In operation
	C59	43683	GEO-1	BDS-3	01.11.18	983	In operation
	C46	44542	ME0-24	BDS-3	23.09.19	657	In operation
	C45	44543	ME0-23	BDS-3	23.09.19	657	In operation
	C44	44794	ME0-22	BDS-3	23.11.19	596	In operation
	C43	44793	ME0-21	BDS-3	23.11.19	596	In operation
	C42	44865	MEO-20	BDS-3	16.12.19	573	in operation
	C41	44864	MEO-19	BDS-3	16.12.19	573	in operation
	C40	44709	IGSO-3	BDS-3	05.11.19	614	In operation
	C39	44337	IGSO-2	BDS-3	25.06.19	747	In operation
	C38	44204	IGSO-1	BDS-3	20.04.19	813	In operation
	C37	43707	MEO-18	BDS-3	19.11.18	965	In operation
	C36	43706	ME0-17	BDS-3	19.11.18	965	In operation
	C35	43647	MED-16	BDS-3	15.10.18	1000	In operation
	C34	43648	ME0-15	BDS-3	15.10.18	1000	In operation
	C33	43623	ME0-14	BDS-3	19.09.18	1026	In operation
	C32	43622	MEO-13	BDS-3	19.09.18	1026	In operation
	C30	43246	MEO-10	BDS-3	30.03,18	1199	In operation
	C29	43245	MEO-9	BDS-3	30.03.18	1199	In operation
	C28	43108	MEO-8	BDS-3	12.01.18	1276	In operation
	C27	43107	MEO-7	BDS-3	12.01.18	1276	In operation
	C26	43602	ME0-12	BDS-3	25.08.18	1051	In operation
	C25	43603	MEO-11	BDS-3	25.08.18	1051	In operation
	C24	43582	MEO-6	BDS-3	29.07.18	1078	In operation
	C23	43581	MEO-5	BDS-3	29.07.18	1078	In operation
	C22	43207	MEO-4	BDS-3	12.02.18	1245	in operation
	C21	43208	MEO-3	BDS-3	12.02.18	1245	In operation
	C20	43002	MEO-2	BDS-3	05.11.17	1344	In operation
	C19	43001	MEO-1	BDS-3	05.11.17	1344	In operation

- BeiDou transmits navigation signals in three frequency bands: B1, B2, and B3, which are in the same area of L-band as other GNSS signals
- To benefit from the signal interoperability of BeiDou with Galileo and GPS China announced the migration of its civil B1 signal from 1561.098 MHz to a frequency centered at 1575.42 MHz — the same as the GPS L1 and Galileo E1 civil signals — and its transformation from a quadrature phase shift keying (QPSK) modulation to a multiplexed binary offset carrier (MBOC) modulation similar to the GPS L1C and Galileo's E1.

Range	Carnier frequency, MHz	Signal	PRN code duration, symbols	Clock rate, MHz	Type of modulation	Data symbol rate, bit/s
B1	1 575,42	B1-CD B1-CP B1D B1P	2 046	1,023 1,023 2, 046	MBOC (6, 1, 1/11) MBOC (6, 1, 1/11) BOC (14, 2)	50/100 no 50/100
B2	1 191,79	B2aD B2aP B2bD B2bP	2 046	10,23 10,23 10,23 10,23	AltBOC (15, 10) AltBOC (15, 10) AltBOC (15, 10) AltBOC (15, 10)	25/50 no 50/100 no
B3	1 268,52	B3 B3-AD B3-AP		10,23 2,5575 2,5575	QPSK (10) BOC (15, 2,5) BOC (15, 2,5)	500 50/100 no

SPECTRAL CHARACTERISTICS OF BEIDOU NAVIGATION SIGNALS

https://www.glonassiac.ru/en/guide/beidou.php

BeiDou-3 Constellation & Frequency bands

Parameter	BeiDou III			
Orbital Period (MEO)	12hrs 37min			
Orbital Height (MEO)	21,528 Km			
Inclination (MEO)	55°			
Number of Orbital Planes (MEO)	3			
Number of satellites	24 MEOs + 3 GEOs + 3 IGSOs + spares			
Reference frame	CGCS 2000			
Reference time	BeiDou Time (BDT)			

GNSS User Technology Report

European Global Navigation Satellite Systems Agency

E04GEO training 13 & 14 July 2021

B2a-PIOS

B2b

BPSK(10)

Power Spectral Density (PDS)

			81		
BEIDOU		*2	82		
	Ì		83	(iii	

GNSS FREQUENCIES IN THE L BAND

GNSS User Technology Report

European Global Navigation Satellite Systems Agency

BeiDou satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

BeiDou satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

GPS+GLO+GAL+BDS satellites visibility: Zagreb, 13th July 2021

http://www.gnssplanningonline.com/

Trimble.

GNSS Planning Online

Satellite Selection							
Satellites: 120/129							
	Satel	lites					
System: active		Selected	Healthy				
GPS	 Image: A start of the start of	31	31				
GLONASS	 Image: A start of the start of	23	23				
Galileo	 Image: A start of the start of	18	18				
BeiDou	 Image: A start of the start of	48	48				
QZSS	×	0	4				

GPS+GLO+GAL+BDS satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

- Geometrical - Time - Position (3D) - Horizontal - Vertical

GPS+GLO+GAL+BDS satellites visibility, Zagreb, 13th July 2021, 0-24h (UTC+2)

$\frac{\text{VDOP}}{\text{HDOP}} = \frac{0.76}{0.48} = 1.58$

) training 13 & 14 July 2021

Global, Continental and Regional (State) Networks

• IGS – International GNSS Service

IGS INTERNATIONAL G N S S SERVICE

• EPN - EUREF Permanent GNSS Network

EUREF Permanent GNSS Network

• CROPOS

IGS INTERNATIONAL GNSSSERVICE

- Voluntary federation of over 200 self-funding agencies, universities, and research institutions in more than 100 countries
- Providing free and open access to the highest precision products available for scientific advancement and public benefit
- Producing products that support realization of the International Terrestrial Reference Frame while providing access to tracking data from over 400 worldwide reference stations
- IGS in numbers:

S:	0		Q	1	
	506	350	118	350	
	STATIONS	ORGANIZATIONS	COUNTRIES	MEMBERS	

https://www.igs.org/

https://www.igs.org/network/#station-map-list

- IGS products support scientific research in:
 - Realization of the International Terrestrial Reference Frame (ITRF)
 - Monitoring deformation of the solid Earth
 - Monitoring Earth rotation
 - Monitoring variations in the hydrosphere (sea level, ice sheets, etc.)
 - Scientific satellite orbit determination
 - Monitoring the Earth's ionosphere and troposphere

PRODUCTS formats

- GNSS precise orbits: SP3 and SP3c (typically) formats
- GNSS Earth rotation parameters: IGS-specified format
- GNSS station positions: Software INdependent EXchange (SINEX) format
- GNSS troposphere ZPD: IGS-specified format
- GNSS ionosphere TEC: Ionosphere Exchange (IONEX) format

https://www.igs.org/

IGS INTERNATIONAL G N S S SERVICE

GPS Satellite Ephemerides / Satellite & Station Clocks

Туре		Accuracy	Latency	Updates	Sample Interval
	orbits	~100 cm			daily
Broadcast	Sat. clocks	~5 ns RMS ~2.5 ns SDev	real time		
	orbits	~5 cm			15 min
Ultra-Rapid (predicted half)	Sat. clocks	~3 ns RMS ~1.5 ns SDev	real time	at 03, 09, 15, 21 UTC	
	orbits	~3 cm			15 min
Ultra-Rapid (observed half)	Sat. clocks	~150 ps RMS ~50 ps SDev	3 – 9 hours	at 03, 09, 15, 21 UTC	
	orbits	~2.5 cm			15 min
Rapid	Sat. & Stn. clocks	~75 ps RMS ~25 ps SDev	17 - 41 hours	at 17 UTC daily	5 min
	orbits	~2.5 cm			15 min
Final	Sat. & Stn. clocks	~75 ps RMS ~20 ps SDev	12 - 18 days	every Thursday	Sat.: 30s Stn.: 5 min

IGS INTERNATIONAL G N S S SERVICE

Geocentric Coordinates of IGS Tracking Stations

Ту	pe	Accuracy	Latency	Updates	Sample Interval
Final positions	horizontal	3 mm	11 – 17 days	ayony Wedneeday	weekly
Final positions	vertical	6 mm		every wednesday	
Final valuation	horizontal	2 mm/yr	11 – 17 days	every Wednesday	weekly
Final velocities	vertical	3 mm/yr			

• Earth Rotation (Polar Motion (PM), Polar Motion Rates (PM rate), Length-of-day (LOD)

Atmospheric parameters

Туре	Accuracy	Latency	Updates	Sample Interval
Final tropospheric zenith path delay with N, E gradients	4 mm (ZPD)	< 4 weeks	daily	5 minutes
Final ionospheric TEC grid	2-8 TECU	~11 days	weekly	2 hours; 5 deg (lon) x 2.5 deg (lat)
Rapid ionospheric TEC grid	2-9 TECU	<24 hours	daily	2 hours; 5 deg (lon) x 2.5 deg (lat)

E04GEO training 13 & 14 July 2021

https://www.igs.org/

EPN – EUREF Permanent GNSS Network

- voluntary federation of over 100 self-funding agencies, universities, and research institutions in more than 30 European countries.
- They work together to maintain the European Terrestrial Reference System (ETRS89)
- ETRS89 is realized by making publicly available the precise ETRS89 coordinates and GNSS observation data of a network of more than 200 permanent operating GNSS observing stations distributed over the European continent
- GNSS data from the EPN stations are freely available through the internet

EUREF Permanent GNSS Network

https://www.epncb.oma.be/

EPN – EUREF Permanent GNSS Network

EUREF Permanent GNSS Network

https://www.epncb.oma.be/

CROPOS – Croatian Positioning System

- National permanent GNSS network
- Owned and managed by SGA
- 33 national GNSS stations + 18 stations (neighboring networks)
- Established in 2008
- Modernized in 2019

E04GEO training 13 & 14 July 2021

https://www.cropos.hr/

CROPOS

CROPOS – Croatian Positioning System

• 3 services:

- 2 in Real-Time: DPS, VPPS
- 1 in Post-Processing: GPPS

• GPPS (formats)

- Trimble proprietary
- RINEX
- 1, 2, 5, 10, 15, 20, 30, 60 sec

Reference Data Shop - Date & Time Selection

You have selected the following reference station(s):

(ZAGR) ZAGR

http://195.29.198.194/Map/SensorMap.aspx

CROPOS – Croatian Positioning System

Trimble.

E04GEO training 13 & 14 July 2021

http://195.29.198.194/Map/SensorMap.aspx

Error sources in GNSS

- Satellite clocks
- Orbit errors

- Ionospheric delays
- Tropospheric delays

- Receiver noise
- Multipath

Contributing Source	Error Range		
Satellite clocks	±2 m		
Orbit errors	±2.5 m		
lonospheric delays	±5 m		
Tropospheric delays	±0.5 m		
Receiver noise	±0.3 m		
Multipath	±1 m	receiver	

Error sources in GNSS

Satellite clocks

- The atomic clocks in the GNSS satellites are very accurate, but they do drift a small amount.
- Example: 10 ns of clock error results in 3 m of position error
- clock on the satellite is monitored by the GNSS ground control system and compared to a master clock
- the satellite provides the user with an estimate of its clock offset
- One way of compensating for clock error is to download precise satellite clock information (e.g. IGS)
- Another way of compensating for clock error is to use a Differential or Relative positioning method
Orbit error

- GNSS ground control segment continually monitors the satellite orbit and calculates ephemeris
- Broadcast ephemeris are updated by the Control segment
- Nevertheless, they are predicted values containing certain error
- One way of compensating for satellite orbit errors is to download precise ephemeris information (e.g. IGS)
- Another way of compensating for satellite orbit errors is to use a Differential or Relative positiong method

Seeber (2003): Satellite Geodesy

Ionospheric delays

- layer of atmosphere between 50 km and 1000 km above the Earth
- contains electrically charged particles (electrons)
- Ionospheric delay varies with solar activity
- Dispersive medium for GNSS signals (frequency dependent)
- TEC is the total number of electrons present along a path between the satellite and the receiver on earth, where 10¹⁶ electrons/m² = 1 TEC unit (TECU)
- Ionospheric delay is frequency dependent, i.e. under normal conditions, dualfrequency (L1 and L2) code and carrier observations can be used to essentially remove ionospheric errors

Phase advance

Ionospheric refraction Δ^{Iono} = Measured – Geometric range

Code delay E04GEO training 13 & 14 July 2021

Tropospheric delay

- troposphere is the layer of atmosphere closest to the surface of the Earth (0-16 km)
- Variations in tropospheric delay are caused by the changing humidity, temperature and atmospheric pressure
- Troposphere is a nondispersive medium for frequencies < 15 GHz, therefore, it affects both L1 and L2 equally
- Composed of Dry (90%; due to air pressure) and Wet component (10%; due to air humidity)
- tropospheric models are normally used to estimate the amount of error caused by tropospheric delay
- Another way of compensating for troposheric delay is to use a Differential or Relative positiong method (over short baselines)

• Receiver noise

- refers to the position error caused by the GNSS receiver hardware and software
- High end (geodetic) GNSS receivers tend to have less receiver noise than lower cost GNSS receivers

Static GNSS Surveying⁴

High-accuracy Static	
Horizontal	3 mm + 0.1 ppm RMS
Vertical	3.5 mm + 0.4 ppm RMS

E04GEO training 13 & 14 July 2021

https://trl.trimble.com/docushare/dsweb/Get/Document-867350/022506-243C_Alloy_GNSS_Ref_Receiver_USL_DS_0919_LR.pdf

Multipath

- occurs when a GNSS signal is reflected off an object
- reflected signal travels farther to reach the antenna, it arrives at the receiver slightly delayed
- delayed signal can cause the receiver to calculate an incorrect position
- The simplest way to reduce multipath errors is to place the GNSS antenna in a location that is away from the reflective surface
- When this is not possible, the GNSS receiver and antenna must deal with the multipath signals

• DOP – Dilution Of Precision

 $\sigma = DOP \sigma_0$

where

 σ = uncertainty of the position

DOP = dilution of precision

 σ_0 = uncertainty of the measurements (user equivalent range error)

• User Equivalent Range Error (UERE) is the total error budget affecting a pseudorange

Van Sickle (2015): GPS for Land Surveyors

• UERE = square root of the sum of the squares of the individual biases

• 4 parameters defining each measuring method (technique)

- Positioning method (Absolute versus Relative positioning)
- Usage of receiver (Static versus Kinematic)
- Observables (Code pseudoranges versus Phase pseudoranges)
- Data processing coordinates determination (Real-Time versus Post-Processing)

Positioning method (Absolute versus Relative positioning)

- Absolute positioning = Point positioning = Single Point Positioning = single receiver which measures pseudoranges to four or more satellites
- Relative positioning is possible if two receivers are used and (code or carrier phase) measurements, to the same satellites, are simultaneously made at two sites.
- The measurements taken at both sites are directly combined.
- Normally, the coordinates of one site are known and the position of the other site is to be determined relatively to the known site (i.e., the vector between the two sites is determined).

Jamieson and Gillins (2018)_Comparative Analysis of Online Static GNSS Postprocessing Services

• Usage of receiver (Static versus Kinematic)

- Static denotes a stationary observation location, while kinematic implies motion
- A temporary loss of signal lock in static mode is not as critical as in kinematic mode.
- Attention should be paid to the difference between the terms "kinematic" and "dynamic":
 - "kinematic" describes the pure geometry of a motion
 - "dynamic" considers the forces causing the motion.

wwwwwwww Observables (Code pseudoranges versus Phase pseudoranges)

- observables are pseudoranges as derived from run-time observations of the coded satellite signal or from measurements of the phase of the carrier
- Generally, the accuracy of code ranges is at the meter level, the accuracy of carrier phases is in the millimeter range
- The disadvantage of phase ranges is the fact that they are ambiguous by an integer number of full wavelengths, whereas the code ranges are virtually unambiguous
- The determination of the phase ambiguities is often a critical issue in high-accuracy satellite-based positioning.

E04GEO training 13 & 14 July 2021

https://www.e-education.psu.edu/geog862/node/1752

GPS Satellite

GPS Receiver

- Data processing coordinates determination (Real-Time versus Post-Processing)
 - Basically, coordinates determination can be carried out in the field (real-time) or done afterwards (Post-Processing)
 - For real-time GNSS, the results must be available in the field immediately
 - The results are denoted as "instantaneous" if the observables of a single epoch are used for the position computation and the processing time is negligible.
 - Postprocessing refers to applications when data are processed in postmission

Relative positioning

Static relative positioning

- objective of relative positioning is to reduce or even eliminate error sources by differencing measurements taken at different stations at the same epoch
- static relative positioning method is commonly used for geodetic surveys
- required observation periods depend on:
 - baseline length
 - number of visible satellites
 - number of carrier frequencies
 - geometric configuration

Receiver	Conventional static	Rapid static
Single-frequency	30 min + 3 min/km	20 min + 2 min/km
Dual-frequency	20 min + 2 min/km	10 min + 1 min/km

- Rapid static (Fast static) technique is based on fast ambiguity resolution techniques. It generally uses code and carrier phase combinations on all frequencies
- The accuracy is correlated with the baseline length and amounts to 1 to 0.1 ppm for baselines up to some 100 km

Relative positioning

• Kinematic relative positioning

- Kinematic surveys provides increased productivity
- Relative position accuracies at the centimeter level can be achieved for baselines up to some 20 km
- requires the resolution of the phase ambiguities before starting the survey
- compared to the static mode, accuracy in the kinematic mode is worse mainly due to multipath and DOP variations
- Kinematic relative positioning with ambiguities resolved in real-time is denoted as Real-Time Kinematic (RTK)

Mode	Horizontal accuracy
Static	5 mm + 0.5 ppm
Kinematic	5 cm + 5 ppm

GNSS Positiong Methods taxonomy

 PPP is an absolute positioning technique that removes or models GNSS system errors to provide a high level of position accuracy from a single receiver

How Does PPP Work?

PPP uses state space representation (SSR) correction products such as **precise satellite orbits**, **clocks** and **signal biases** from either commercial or/and public (e.g., IGS) that are delivered to the user via satellite and/or internet.

- Advantage: PPP also provides a positioning solution in a dynamic, global reference frame such as the International Terrestrial Reference Frame (ITRF)
- Disadvantage of PPP: most significant being the long convergence times (of the order of 20 minutes or more) necessary for the ambiguity float solution to converge so as to ensure centimetre-level positioning accuracy
- PPP requires a number of corrections to be applied to account for centimetre-level variations in undifferenced PR (pseudorange) and CPH (carrier-phase) observation biases

Correction Type	PPP	Differential GNSS
Satellite Specific errors		
Precise satellite clock corrections	~	×
Satellite antenna phase centre offset	✓	✓
Satellite antenna phase centre variations	✓	✓
Precise satellite orbits	~	√/×
Group delay differential	✓ (L1 only)	×
Relativity term	✓	×
Satellite antenna phase wind-up error	~	×
Receiver Specific Errors		
Receiver antenna phase centre offset	✓	✓
Receiver antenna phase centre variations	✓	✓
Receiver antenna phase wind-up	✓	×
Geophysical Models		
Solid earth tide displacements	✓	×
Ocean loading	✓	×
Polar tides	~	×
Plate tectonic motion	✓	×
Atmospheric Modelling		
Tropospheric delay	✓	✓
Ionospheric delay	✓ (L1 only)	×

Biases and errors that need to be applied or accounted for in typical PPP

RIZOS, JANSSEN, ROBERTS and GRINTER (2012): Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End?

- PPP online services and applications
 - Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP) (https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php)
 - magicGNSS (https://magicgnss.gmv.com/)
 - Automatic Precise Positioning Service APPS
 - GNSS Analysis and Positioning Software GAPS (http://gaps.gge.unb.ca/)
 - Trimble CenterPoint RTX Post-Processing Service (https://www.trimblertx.com/)

E04GEO training 13

gLAB

Software Characteristics

http://www2.unb.ca/gge/Resources/PPP/OnlinePPPs.html

Solution Type

		NRCan	GAPS	APPS	magicGNSS
	Static	All epochs /	30-sec epochs /	5-min epochs /	All epochs /
	Processing	Smoothed	Forward only	Smoothed	Batch solution
& 14 July	Kinematic	All epochs /	All epochs /	5-min epochs /	All epochs /
	Processing	Smoothed	Forward only	Smoothed	Batch solution

Trimble RTX

- Trimble CenterPoint RTX post-processing service
- post-processing uses the **Trimble RTX technology** to post-process user-submitted GNSS observation files providing high-accuracy coordinates for anyone nearly anywhere in the world.

https://www.trimblertx.com/

Trimble.

CenterPoint RTX Post-Processing

Post-Processing

Register

Contact Us

Support

WELCOME TO THE TRIMBLE CENTERPOINT RTX POST-PROCESSING SERVICE

Now Supporting Galileo

Process your data with GPS, GLONASS, Galileo, BeiDou, and QZSS

Welcome to the Trimble CenterPoint@ RTX postprocessing service. Trimble RTX© is a global GNSS technology providing centimeter-level positioning accuracy.

<2cm Horizontal Accuracy

- GNSS Compatibility
- No Base Station Required

Register for Unlimited Access Please register to get unlimited access to the CenterPoint RTX post-processing service for one year.

Register

If you have already registered, please select Post-Processing to begin your session.

Post-Processing

Trimble CenterPoint® RTX post-processing service must not be re-sold to 3rd parties unless explicitly permitted by Trimble Inc.

ANNEX 2B: MAIN COMMERCIAL AUGMENTATION SERVICES

		Name	e Service	Stated Performance	Supported Constellations	Delivery Method	Method	Provider	
			Atlas Basic	< 50 cm	GPS + GLONASS + Galileo + BeiDou	L band	PPP		
		Atlas	Atlas H30	< 30 cm	GPS + GLONASS + Galileo + BeiDou	L band	PPP	Hemisphere	
			Atlas H10	< 8 cm	GPS + GLONASS + Galileo + BeiDou	L band	PPP	8	
		C MAN	C-NavC ¹	< 15 cm	GPS	L band	PPP	0	
		C-Nav	C-NavC ²	< 5 cm	GPS + GLONASS	Internet, L band	PPP	Oceaneering	
			PPP Float L1	50 cm	GPS + GLONASS + Galileo + BeiDou	Internet, L band	PPP	24	
			PPP Float L1/L2	10 cm	GPS + GLONASS + Galileo + BeiDou	Internet, L band	PPP		
		GeoFlex	PPP Fix	4 cm	GPS + GLONASS + Galileo + BeiDou	Internet, L band	PPP	GeoFlex	
			Local PPP Fix&Rapid	4 cm	GPS + GLONASS + Galileo + BeiDou	Internet, L band	PPP	-	
			Global PPP Fix&Rapid	4 cm	GPS + GLONASS + Galileo + BeiDou	Internet, L band	PPP	13 	
		Here	HD GNSS	<1 m	GPS + GLONASS + Galileo + BeiDou	Internet	PPP	Here	
		Magic	MagicPPP	< 10 cm	GPS + GLONASS + Galileo + BeiDou + QZSS	Internet	PPP	GMV	
		NAVCAST	NAVCAST	< 20 cm	GPS + Galileo	Internet	PPP	SpaceOpal	
			VBS	<1m	GPS	L band	DGNSS		
		OmmiETAD	HP	5-10 cm	GPS	L band	PPP	Trimble	
		UMINISTAK	ХР	8-10 cm	GPS	L band	PPP	Inmple	
	ViewPoint	<	1 m	GPS + GLONAS	S + Galileo + BeiDou + QZSS	Internet, L k	band	PPP	
RangePoint	<	50 cm	GPS + GLONAS	S + Galileo + BeiDou + QZSS	Internet, L ł	band	PPP	- Trimble	
nix	FieldPoint	<	10 cm	GPS + GLONAS	S + Galileo + BeiDou + QZSS	Internet, L b	band	PPP	-
	CenterPoint	<	2 cm	GPS + GLONAS	S + Galileo + BeiDou + QZSS	Internet, L k	band	PPP	
			Sapa Premium +	< 10 cm with Integrity	GPS + GLONASS	Internet, L band	PPP-RTK		
		Skylark	Skylark	10 cm	GPS + Galileo	Internet	PPP	Swift Navigation	
		Starfire	SF2	< 10 cm	GPS + GLONASS	L band	PPP	- John Deere	
		Justifie	SF3	< 3 cm	GPS + GLONASS	L band	PPP	John Deele	
			G2	< 10 cm	GPS + GLONASS	Internet, L band	PPP	<u></u>	
			G2+	< 3 cm	GPS + GLONASS	Internet, L band	PPP	2	
		Starfix	G4	< 10 cm	GPS + GLONASS + Galileo + BeiDou	Internet, L band	PPP	- Fuam	
		Juli IIX	XP2	< 10 cm	GPS + GLONASS	Internet, L band	PPP	- Ugio	
			HP	< 10 cm	GPS	Internet, L band	DGNSS		
			L1	< 1 m	GPS	Internet, L band	DGNSS		
			TerraStar-L	50 cm	GPS + GLONASS	L band	PPP	- NORTH AND TOTAL	
		TerraStar	TerraStar-C	5 cm	GPS + GLONASS	L band	PPP	Hexagon AB	
			Terra Star-C PRO	3 cm	GPS + GLONASS + Galileo + BeiDou	L band	PPP	2	
			Apex	< 5 cm	GPS	L band	PPP	2	
GNSS liser Techn	ININGV Renart		Apex ²	< 5 cm	GPS + GLONASS	L band	PPP		
	isissy report		Apex ⁵	< 5 cm	GPS + GLONASS + Galileo + BeiDou + QZSS	L band	PPP		
***	European	Veripos	Ultra	< 10 cm	GPS	L band	PPP	Hexagon AB	
	Global Navigation		Ultra ²	< 10 cm	GPS + GLONASS	L band	PPP	49 8 <i>6</i>	
****	Satellite Systems		Standard	<1m	GPS	L band	DGNSS		
	Agency		Standard	<1m	GPS + GLONASS	L band	DGNSS	2	

- Trimble RTX[™] (Real Time eXtended) is a high-accuracy, global GNSS correction technology that combines real-time data with positioning and compression algorithms to provide centimeter level positioning accuracy
- Trimble RTX technology utilizes real-time data from a Trimble owned global reference station infrastructure to compute and relay satellite orbit, satellite clock, and other system adjustments to the receiver
- These adjustments are transmitted to the receiver via satellite, Internet Protocol (IP or Cellular), while post-processed results are sent to the user via email or a client interface
- The CenterPoint RTX post-processing service is a FREE service available for all users
- Users are required to register every year to get unlimited use of the service.

- The achievable accuracy level of the CenterPoint RTX post-processing service is 2 cm or better in the horizontal and approximately 6 cm in the vertical
- This is based on a minimum 1-hour observation file. As the data session approaches, but does not exceed 24 hours, accuracy can approach 1 cm in the horizontal and 3 cm in the vertical
- The CenterPoint RTX post-processing service supports any brand or model of dual frequency receiver
- Specific antenna types are supported by CenterPoint RTX post-processing service and are listed on http://TrimbleRTX.com/SupportedDevices.aspx

PPORTED ANTENNAS	
IGS Name	Description
TRM105000.10 NONE	Zephyr 3 rover, switchable MSS filter in LNA; p/n 105000-10; L1/L2/L5/G1/G2/G3/E1/E2/E5ab/E6/BDS
TRM115000.00 NONE	Zephyr 3 Geodetic; switchable MSS filter in LNA; p/n 115000-00; L1/L2/L5/G1/G2/G3/E1/E2/E5ab/E6/BDS
TRM115000.00 TZGD	Zephyr 3 Geodetic; switchable MSS filter in LNA; p/n 115000-00; L1/L2/L5/G1/G2/G3/E1/E2/E5ab/E6/BDS

The the requirements of the observation file?

Observation files must meet the following requirements:

- Data formats accepted include Trimble proprietary data formats (e.g. DAT, T01, T02, T04, Quark) and the standard RINEX 2 and RINEX 3 data formats
- For optimal processing results, it is recommended to provide at least 60 minutes of observations.
- Data files cannot exceed 24 hours in length
- Data files must be static only
- Data files must contain dual frequency pseudorange and carrier phase observations (L1 and L2)
- Data must have been collected after 14 May 2011
- BeiDou data is included since 04 Jun 2014
- Galileo data is included since 01 Jan 2017
- If your observation data consists of several files, please compress them to a ZIP archive and upload the zipped file. All files in the ZIP archive must belong to the same station.

- The achievable accuracy is very closely correlated to the length of the observation file
- It is recommended to use data sets that are a minimum of 1-hour in length to achieve 2 cm horizontal accuracy
- Data sets less than 1-hour will result in less accurate position results
- Data sets longer than 1-hour will yield even greater accuracy and can approach 1 cm
- The CenterPoint RTX post-processing service does not accept observation files that are longer than 24 hours
- The recommended observation rate is 10 seconds. Files with higher observation rates will be accepted, but the service will decimate to 10 seconds before processing. Files must have an observation rate higher than or equal to 60 seconds.

- data sets that were collected prior to March 23rd, 2017 are derived in the observation epoch (current epoch) of ITRF2008
- data sets that were collected after March 23rd, 2017 are derived in the observation epoch (current epoch) of ITRF2014
- CenterPoint RTX corrected post-processed positions can be transformed to a number of reference frames (non exhaustive list):
 - ITRF2014: Current Epoch, Epoch 2010.0
 - ITRF2008: Current Epoch, Epoch 2005.0
 - ITRF1989 (1988.0)
 - ITRF1994 (1993.0)
 - ITRF1996 (1997.0)
 - ITRF2000 (1997.0)
 - ITRF2005 (2000.0)
 - ETRS89 (1989.0)

.....

• ETRF2000-RO5 (2000.0)

- The CenterPoint RTX post-processing service allows the transformation of the current epoch ITRF2008 / ITRF2014 position to another reference frame with a different reference epoch and based on a selected tectonic plate
- Transforming the positions computed at the observation epoch to a fixed epoch requires knowledge of the station velocity due to the tectonic plate motion
- If the velocity is not available, it must be determined from a tectonic plate model such as MORVEL56

• in June 2014 the tectonic plate model was changed from NUVEL-1A to MORVEL56, following tectonic plates are supported:

T. Megean	1.	A	eg	e	а	n
-----------	----	---	----	---	---	---

2. Altipano

- 3. Amurian
- 4. Anatolia
- 5. Antarctica
- 6. Arabia
- 25. Lwandle
- 26. Macquarie
- 27. Manus
- 28. Maoke
- 29. Mariana
- 30. Molucca Sea
- 31. Nazca
- 32. New Hebrides

- 7. Australian
- 8. Balmoral Reef
- 9. Banda Sea
- 10. Birds Head
- 11. Burma
- 12. Capricorn
- 33. Niuafoou
- 34. North America
- 35. North Andes
- 36. North Bismarck
- 37. Nubia
- 38. Okhotsk
- 39. Okinawa
- 40. Pacific

- Caribbean
 Caroline
 Cocos
 Conway
 Conway
 Easter
 Eurasian
 Panama
 Philippine Sea
 Rivera
 Sandwich
 Scotia
 Shetland
 Solomon Sea
 - 48. Somalia

- 19. Futuna
- 20. Galapagos
- 21. Indian
- 22. Juan de Fuca
- 23. Juan Fernandez
- 24. Kermadec
- 49. South America
- 50. South Bismarck
- 51. Sundaland
- 52. Sur
- 53. Timor
- 54. Tonga
- 55. Woodlark
- 56. Yangtze

• Three-step procedure:

Thank you for your request. After your file, SISA3620.t02, is processed, we will send an email with the results to dsugar@geof.hr.

• Three-step procedure:

CORRECTION SERVICES				
Dear Customer,				
Your uploaded file (SISA3620.t02) was successfully processed.				
The processing result is a report which contains coordinates in ITRF2014 (reference epoch) and ITRF08 (current epoch). For tectonic plate corrections the plate EURASIA was used. As per your request, the tectonic plate was determined automatically by the RTX-PP server based on the estimated latitude and longitude of the observation data.				
The report is attached to this e-mail in XML and PDF formats.				
This e-mail was generated automatically by <u>TrimbleRTX.com</u> .				
Powered by				
CORRECTION SERVICES				
Report_25540745.xml Report_25540745.pdf 5 KB 114 KB				

Trimble CenterPoint RTX – processing report

Post-Processing Service Based on RTX Technology

TrimbleRTX.com

Contributor: Reference Name: Upload Date:

Report Time Frame: Start Time: End Time: Observation File Type(s): Observation File(s): Antenna: Name: Height: Reference: Receiver Name: Coordinate Systems: dsugar@geof.hr SISA3620.t02 07/13/2021 14:15:24 UTC

12/27/2020 00:00:00 UTC 12/27/2020 23:59:45 UTC T02 SISA3620.t02

TRM115000.00 TZGD 0.000 m Bottom of antenna mount TRIMBLE ALLOY ITRF2014 Eurasia (Auto-detected) MORVEL56 15 s

Statistics

Tectonic Plate: Tectonic Plate Model:

Processing Interval:

# Total Obs	# Usable Obs	# Used Obs	Percent
5760	5760	5760	100

Trimble CenterPoint RTX – processing report

Used Satellites

# Total Satellites:	80
GPS:	G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G12 G13 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32
GLONASS:	R01 R02 R03 R04 R05 R07 R08 R09 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R24
Galileo:	E01 E02 E03 E04 E05 E07 E08 E09 E11 E12 E13 E15 E19 E21 E24 E25 E26 E27 E30 E31 E33 E36
BeiDou:	C06 C07 C09 C10 C11 C12 C13 C14

Processing Results

ITRF2014 at Epoch 2010.0				
Coordinate	Value	σ		
X	4297851.915 m	0.003 m		
Y	1262317.958 m	0.003 m		
Z	4525446.017 m	0.003 m		
Latitude	45° 29' 7.48603" N	0.002 m		
Longitude	16° 22' 4.76558" E	0.002 m		
El. Height	158.894 m	0.004 m		

ITRF2014 at Epoch 2020.99		
Coordinate	Value	σ
Х	4297851.752 m	0.003 m
Y	1262318.133 m	0.003 m
Z	4525446.123 m	0.003 m
Latitude	45° 29' 7.49090" N	0.002 m
Longitude	16° 22' 4.77541" E	0.002 m
El. Height	158.895 m	0.004 m

Report Information

Trimble RTX Solution ID:	
Solution Type:	
Software Version:	
Creation Date:	

25540745 Static 8.5.0.19198 07/13/2021 14:17:40 UTC

Recall what we went through...

- Motivation instead of introduction
- Global Navigation Satellite System (GNSS) overview & current status
- Global, Continental and Regional (State) Networks
- Error sources
- Measuring methods
- Precise Point Positioning (PPP)
- **Case studies:**
- Zagreb (22nd March 2020)
- Petrinja (28th & 29th December 2020 6th January 2021)

EO4GEO training: Fast disaster response – satellite technologies for surface displacement monitoring GNSS July 12th – 14th, 2021

University of Zagreb – Faculty of Geodesy

E04GEO training 13 & 14 July 2021

Co-funded by the Erasmus+ Programme of the European Union

UN4DRR