

The rise of Artificial Intelligence for Earth Observation

AGENDA

machine learning

natural language

processing (NLP)

(ML)

Image credits: https://www.instagram.com/p/B8qo6SWHmsD/?utm_source=ig_web_copy_link

deep learning

unsupervised

content extraction

machine translation

supervised

classification

Image credits: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Machine Learning and Deep Learning

Basic concepts

Image credits : https://www.iceye.com/

Supervised Learning

In **supervised learning**, the training data that is fed to the algorithm already includes the desired solutions, called labels. A typical supervised learning task is classification. To perform a classification of land cover, a multispectral image is used. In this process, you select pixels that represent patterns or land cover features that you recognize, or that you can identify with help from other sources, such as aerial photos, ground truth data, or maps. Knowledge of the data, and of the classes desired, is required before classification.

The algorithm is trained with many pixels of the different desired land cover classes and, based on that training, classifies the multispectral image.

Supervised Learning

Unsupervised Learning

In **unsupervised learning**, the system tries to learn without first training the data. In the land cover classification example, the algorithm attempts to divide the multispectral image into a set number of classes based solely on the data in the image.

The output classes are determined by the distribution of the data in the image, not by the training data of desired land cover classes that is provided in Supervised learning. The analyst then attaches meaning to the resulting classes.

Unsupervised training is dependent upon the data itself for the definition of classes. This method is usually used when less is known about the data before classification.

Unsupervised Learning

Pixel Based and Object Based

Pixel based

Object based

Image credits: Comparing Pixel and Object-Based Approaches to Map an Understorey Invasive Shrub in Tropical Mixed Forests

Classification tasks

Object Detection

Instance Segmentation

Machine Learning and Deep Learning Algorithm

architectures

Machine Learning Methodologies

CART Decision Tree

K-Nearest Neighbors

NN architectures

planetek _{italia}

Artificial Neural Network architectures

Multi Layer Perceptron

input layer 1 hidden layer 2 hidden layer 3

Convolutional NN

Generative Adversarial NNs

Training MLP

Image credits: Convolutional Neural Networks : More Dogs, cats, and frogs and cars. https://www.linkedin.com/pulse/convolutional-neural-networks-gaurav-jain/

Training MLP

Image credits: Programming a deep neural network from scratch using mql language : https://www.mql5.com/en/blogs/post/724245

Different architectures of CNN

Convolutional NNs

....

Bias = 1

••••

....

....

...

Convolutional NNs

Convolutional NNs

Most Famous CNN Architectures

AlexNet (2012)

LeNet-5 (1998)

VGGNet (2014) GoogleNet/Inception(2014) conv 3_2 conv 1_2 conv 2_1 conv 3_3 conv 4_2 conv 5_3 conv 1_1 conv 2_2 conv 4_3 conv 3_1 conv 4_1 conv 5_1 conv 5_2 pool 1 pool 2 pool 3 pool 4 pool 5 fc 6 fc 7 fc 8 image probabilities 0-0-0-0-0-0-0-0-0 **----**-(t)

Generative Adversarial Neural Networks

planetek _{italia}

Generative Adversarial Neural Networks

After 1 epoch(s)

Machine Learning and Deep Learning EO DATA

Image credits : https://www.iceye.com/

Image credits: HTTP://EARTHSYSTEMDATALAB.NET/

SpaceNet Challenge Datasets

Dataset	Task	Торіс	Platform	Sensor	Resolution	Example Application by Architectures
NWPU RESISC45 [155]	IR IR	LULC	multiple platforms	optical	high	VGG-16 [155] Incention V1 and ResNet 50 [156]
BigEarthNet [116 117]	IR		Sentinel 2	multispectral	medium	ResNet-50 [117]
So2Sat LCZ42 [157]	IR	local climate zones	Sentinel 1+2	mltspectr+SAR	medium	ResNeXt-29 + CBAM [157]
SpaceNet1 [158]	IS	building footprints	-	multispectral	low	VGG-16 + MNC [158 159]
SpaceNet2 [160]	IS	building footprints	WorldView3	multispectral	high	U-Net (modified: inputdepth = 13) [160]
SpaceNet3 [161]	IS	road network	WorldView3	multispectral	high	ResNet-34 + U-Net [161]
SpaceNet4 [162]	IS	building footprints	WorldView2	multispectral	high	SE-ResNeXt-50/101 + U-Net [162]
SpaceNet5 [163]	IS	road network	WorldView3	multispectral	high	ResNet-50 + U-Net [164], SE-ResNeXt-50 + U-Net [163]
SpaceNet6 [165,166]	IS	building footprints	WordView2 + Capella36	mltspectr + SAR	high	VGG-16 + U-Net [166]
ISPRS 2D Sem. Lab. [126]	IS	multiple classes	plane	multispectral	very high	U-Net, DeepLabV3+, PSPNet, LANet (patch attention module) [167], MobileNetV2(with atrous conv) + Dual
DeepGlobe-Road [169]	IS	road network	WorldView3	multispectral	high	D-LinkNet (ResNet-34 + U-Net with atrous decoder) [170], ResNet-34 + U-Net [171]
DeepGlobe-Building [169]	IS	building footprints	WorldView3	multispectral	high	ResNet-18 + Multitask U-Net [172], WideResNet-38 +
Deer Clabe LCC [1(0]	IC	LUIC	Mould View?	mereltion o stual	hiah	U-INET [1/3] Dense Freeien Classmate Naturelle (Dense Nature FCN
DeepGlobe-LCC [169]	15	LUIC	wond views	multispectral	nign	varaint) [174], Deep Aggregation Net (ResNet + DeepLabV3 + variant) [175]
WHU Building [176]	IS	building footprints	multiple platforms	optical	high	VGG-16 + ASPP + FCN [177]
INRIA [178]	IS	building footprints	multiple platforms	multispectral	very high	ResNet-50 + SegNet variant [179], U-Net variant [180]
DLR-SkyScapes [181]	IS	multiple classes	helicopter	optical	very high	SkyScapesNet (custom design [181])
NWPU VHR-10 [182]	OD	multiple classes	airborne platforms	optical	very high	DarkNet + YOLO (modified: VaryBlock) [183], ResNet-101 + FPN (modified: Densely connected top-down path) + fully convolutional detector head [184]
COWC [185]	OD	vehicle detection	airborne platforms	optical	very high	VGG16 + SSD + correlation alignment domain adaptation [186]
CARPK [187]	OD	vehicle detection	drone	optical	very high	VGG16 + LPN (Lavout Proposal Net) [187]
DLR 3K Munich [188]	OD	vehicle detection	airborne platform	optical	very high	ShuffleDet (ShuffleNet + modified SSD) [189]
DOTA [100]	OD	multiple classes	airborne platforms	optical	very high to high	ResNet-50+improved Cascade R2CNN see leader board
			•	•		of [100], ResNet-101/FPN + Fater R-CNN OBB + RoI transformer [138]
DIOR [24]	OD	multiple classes	multiple platforms	optical	heigh to medium	ResNet-101 + PAnet and ResNet-101 + RetinaNet [24]

Credits: Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends

Satellite Images (NO DOGS NO CATS)

Satellite Images (SHADOWS and OFF-NADIR angles)

Satellite Images (CLOUDS)

Satellite Images (PIXEL RESOLUTION)

Satellite Images (PIXEL RESOLUTION)

Misalignment between GT and satellite images

Time series challenges

- Coregistration
- Different light condition
- No-data interpolation

neat-EO

Efficient AI4EO OpenSource framework

eo-learn makes extraction of valuable information from satellite imagery easy.

openEO develops an open API to connect R, Python, JavaScript and other clients to big Earth observation cloud back-ends in a simple and unified way.

Open Interoperable platform for unified access and analysis of earth observation data

COPERNICUS ACCESS PLATFORM INTERMEDIATE LAYERS SMALL SCALE DEMONSTRATOR

Copernicus and Sentinel data at your fingertips alongside cloud computing resources and tools

Presented by **ML**Reef Machine Learning tools & platforms landscape - v.1.0 January 2021 DATA MANAGEMENT MODELLING Data Exploration & Management Notebook / Code Management **Data Processing & Visualization** Model Training Model Management Model Evaluation alteryx 🖉 ASCENDIO colob 💋 DASK alteryx 👍 🔲 🙏 коовитных COHESITY Orubrik allegro.ai 🛝 ALLUXIO 🛕 Amundsen 🗧 😡 📾 🔤 🔤 📴 alteryx 🚺 iguazio 🕹 🔷 colob 🕏 databricks: 📿 🏙 🖓 commo 🗇 dotscience ∧arize *? war stream 🖉 🚞 🔹 🔹 🖉 🖉 allegro.ai 😫 databricks 🕗 🛗 Deepnote COOMING FLOYDHUB 🔺 🗇 druid کې 🕹 MLReef 🕹 databricks 🛦 دەمەستىپىدە FLOYDHUB 🕉 Flyte 🧿 🐞 💷 PDUIG kaggle 🗞 MLReef 💀 👘 mlflow . . Source Al deckship 💥 🔔 kaggle 💀 🕸 MLReef 🖻 Flyte gluent. 🐏 🕻 iguazio 🔎 🤣 PerceptiLabs 🧟 snorkel 🖳 turi 🗶 🔕 VALOHAA 🛇 SSAS 🗟 Anyscale 💰 Pachyderm 🌘 perla SPOR DAPARAVE ATSCALE IN MOMMENT EdotData FLOYDHUB CLUON Model Explainability Spena polyaxon Pachyderm Simp incorta miflow 🔷 🐞 🔺 🚧 🕻 iguazia CLOUDIRA kaggle III datagrok 🖉 data ClearSky 🔬 fiddler W InterpretML Weights & Biases alteryx MLReef I MODIN Experiment Tracking MLReef modzy mlflow > PerceptiLabs PerceptiLabs DATERA & dremio elastifile erwin Excelero & Fluree SNaveego (OperML & Pachyderm 🕻 iguazio allegro.ai 🦿 comet 💆 🖉 🎬 DataRobot datmo 🔅 commo FLOYDHUB Polyaxon SSAS tutize (Svaloka) C plosa presto >> OPrometheus HAN LEDUIG mlflow I MLReef M www. Comm. Polyaxon S star 🛄 Ownord Common Sas a snorkel SQLFlow () Statu Waterline Data___ () Milvos Occose Comm. The Parquet C plosa presto Weights & Biases LOSSW/SE turize evaex 🙆 valora allegro.ai tomr oversch 🔆 vexata velowersk Frameworks & major libraries Model (Hyperparameter) Optimization Weights & Biases 🔯 👩 Angel 🦿 comet DataRobot 🖲 🗄 polyoxon 🖸 SIGOPT 🖇 SPELL hung @ OPTUKA 🚓 🍂 K Keras 📶 🚳 👧 🕺 🕺 🕺 Feature Engineering alteryx allegro.ai SSas OPyTorch REAL SpaCy TensorFlow ____ XGBoost ONNX Data Labelling EdotDoto @ FEAST 💠 appen 🔺 🔅 Dataturks 🗵 Pachyderm SSAS DataRobot 🍀 Determined Al 🗷 dotData 🔔 🎌 🎬 Transmogrif Al 🕻 iguazio 🛓 🚲 🙆 🟥 🕻 iguazio 🗧 🗞 kafka 🚯 🛞 CONFLUENT doccan 🗽 💐 🍑 i Merit prodigy Ib Labelbox 🔠 SUPERVISELY 5 🙆 VALOHAI 📑 🙆 🚣 CONTINUOUS DEPLOYMENT Playment scole & snorkel 参 💲striim 🔲 IHIVE ALLUXIO SOOR DISERUE AIBLE 🙏 ALGORITHMA allegro.ai 🏄 🍲 =cortex ∧ arize @ datatron 🕤 fiddler (6) FEAST Contractor Contractor Contractor Data Version Control Data Generation dataron datmo Croomero EldotData FLOYDHUB HELUCID HEPert SSAS STREAM TACTON : iguazio 🖉 🗯 DATADOS DataRobot Ocomer 🖧 kafka. 🖉 🤐 🖾 dot Doto 💹 🔹 😫 🔛 scole scrapinghub WFRITZ AL Siguazio @Kubeflow mlflow modzy: snorkel MYCU PREFECT DC FLOYDHUB MLReef DATPROF State Unravel SynLoha Verta Pachyderm Waterline Data 🕲 WALCHAU Verta How 🔷 🐞 🕹 alteryx alteryx MMdnn 🚱 ONNX BoloidVI. allegro.ai COMPUTING MANAGEMENT Data Privacy Data Quality Checks A arize St great_expectations 🔊 🔊 🖉 🖉 🖉 🖉 🖉 SECURITY & PRIVACY Computing & Data Infrastructure Environment Management Resource Allocation SCALING Naveego mostly APPySyft TUMULT CONDA sdatabricks datmo 🛓 🔛 DATADOG 📩 🔯 DATADOG medzy: 🏠 PySyft ogra 👩 💆 ORACLE 🗕 🛤 🛞 MAHOUT 🚸 MLReef allegro.ai 🔺 🛛 😆 databricks 🖉 🕍 🖲 datatron 🛛 datmo 🔔 🦛 🖡 linode 🔜 🦾 🥥 💎 SELDOM SELVIN 📴 HOO polyaxon 💲 sect. 📴 🙆 valonal allegro.ai

Machine Learning and Deep Learning

EO Applications

Building Detection

Торіс:	Object Detection
Sensor:	Optical -WV3
Resolution:	VHR-0.5m
Bands:	RGB
Training:	SpaceNet
Method:	MaskRCNN

More information: https://github.com/Mstfakts/Building-Detection-MaskRCNN

Topic:	LULC (tile based)
Sensor:	multispectral-S2
Resolution:	medium-10m
Bands:	13
Training:	EuroSAT
Method:	ResNet-50

More information: EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification

Topic:LCLU (pixel based)Sensor:multispectral - S2 TSResolution:medium - 10mTraining:provided by governmentMethod:LGBM-UNet

More information: https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-2-bd9aa86f8500

Change detection

Topic:	uns. Change detection
Sensor:	multispectral - S2 pre-post
Resolution:	medium - 10m
Bands:	12
Method:	Autoencoder

Change detection

Topic:	uns/
Sensor:	mult
Resolution:	med
Bands:	12
Bands:	One
Method:	RF +

ML+DL

uns/sup Change detection multispectral - S2 TS and pre-post medium - 10m 12 Onera Satellite Change Detection RF + change point det + Unet

OneAtlas - AIRBUS

17 May 2019

5 April 2018

Topic:	sup. Change Detection
Data:	VHR - Pléiades - SPOT
Method	: Machine Learning + human check

planetek _{italia}

More information: https://oneatlas.airbus.com/home

Торіс:	Data Augmentation
Sensor:	multispectral - S2
Resolution:	medium - 10m
Bands:	12
Training:	EuroSAT
Method:	GANs

1D Time series data: Persistent Scatterers

opic:	Clustering PS	
Data:	PS from S1	
S Num:	~10M	
Clusters:	5	
/lethod:	K-Means	

MDPI and ACS Style

Amoroso, N.; Cilli, R.; Bellantuono, L.; Massimi, V.; Monaco, A.; Nitti, D.O.; Nutricato, R.; Samarelli, S.; Taggio, N.; Tangaro, S.; Tateo, A.; Guerriero, L.; Bellotti, R. PSI Clustering for the Assessment of Underground Infrastructure Deterioration. *Remote Sens.* **2020**, *12*, 3681.

planetek _{italia}

Topic:	Anomaly detection
Data:	Marine data
Rate:	Weekly
Method:	LSTM+ARIMA

Al on board

FSSCat/Ф-sat-1 Demonstrating the potential of AI for Earth observation

Φ-sat-1 is a new artificial intelligence experiment carried on the Federated Satellite Systems (**FSSCat**) mission

#FSSCat #Phisat1

Detecting clouds in the images

Φ-sat-1 technology

processes data on board

Eliminating images with too much cloud cover

eesa

Returning only **usable data** to Earth

Image credits: https://twitter.com/ESA_EO/status/1274991895706570753

CRITE: AI to map shadowed coffee plantations using multi-temporal and multi-sensor EO images

CRITE - Project

Image credits : https://www.iceye.com/