
EO4GEO WEBINAR

Active fire detection with Sentinel-3 data

Tereza Roth, Remote Sensing Scientist Thursday, 28 October 2021

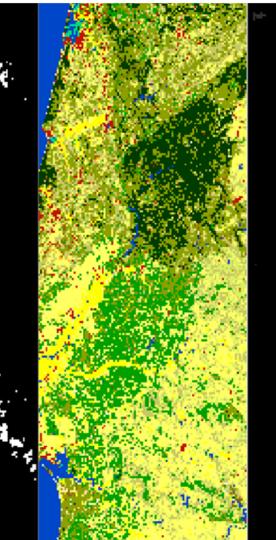
Key figures

- **Duration**: 4 years from January the 1st, 2018
- **Budget**: 3,87 million € (funded by ERASMUS+)
- **Partnership**: 25 Partners + 40+ Associated Partners (from 16 EU Countries) from Academia, Companies and networks
- Coordinators: GISIG (General), KU Leuven (Scientific & Technological), PLUS (Education & Training), Climate-KIC (Exploitation)

Defining the Vision and Mission

From Vision to Action

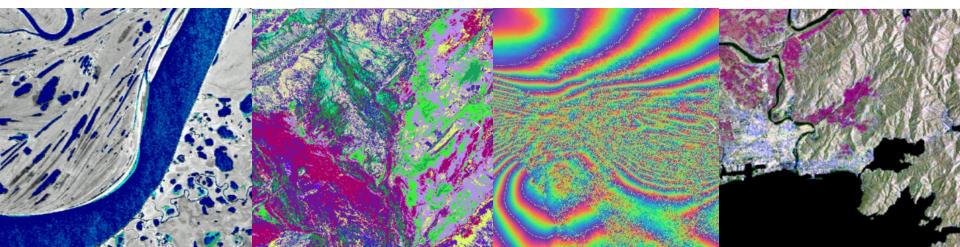
The **VISION of the Sector Skills Strategy** is to foster the growth of the European EO*GI sector ensuring a workforce with the **right skills**, **in the right place**, **at the right time**.


The **MISSION of the Sector Skills Strategy** is to ensure the strategic cooperation among stakeholders on skills development in the EO*GI sector (Sector Skills Alliance).

eo4geo Webinar agenda

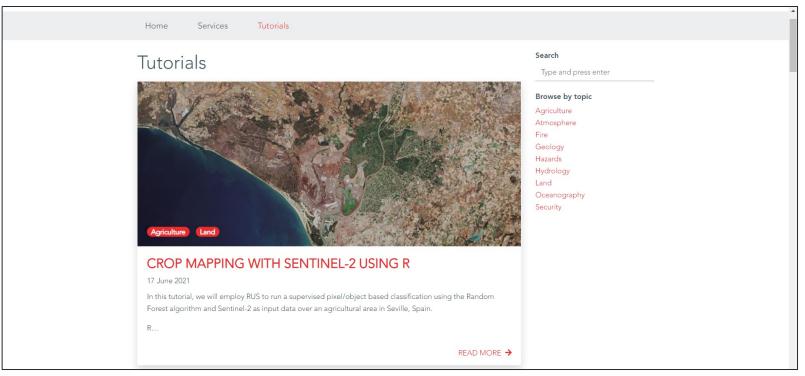
- Introduction to the topic of active fire detection
- Demonstration of the Sentinel-3 data processing for active fire detection
- Live Q&A session

Approx. 1 hour + Q&A


Serco EO Training

eo4geo

- Face 2 Face Workshop
- Webinar / Virtual Classroom
- Face 2 Face Training



Serco website Serco Training webpage

https://eotraining-serco.com/tutorials/

- In 2017 the forest fires in Portugal burned 520,000 hectares of forest.
- Nearly 60% of all burned area in the EU in 2017
- Highest in the recorded history
- Sensors used for operational active fire detection SLSTR (Sentinel-3), MODIS (Terra and Acqua), VIIRS (NASA/NOAA SNPP), etc.

Sentinel-3 SLSTR RBT

- SLSTR Sea and Land Surface
 Temperature Radiometer
- Nadir and Oblique view
- 9 spectral bands:
 - S1 to S6 radiances on 0.5 km grid. Three stripes are distinguished: A ("-an", "_ao"), B ("_bn", "_bo"), and TDI ("_cn", "_co").
 - S7 to S9 and F1 and F2 (fire bands) brightness temperatures on 1 km grid (notation "_*in*" or "_*io*")

				aerosol
.5 km	S3	0.865	0.02	NDVI, cloud flagging, Pixel co- registration
	S4	1.375	0.015	Cirrus detection over land
o″), B .cn″,	S5	1.61	0.06	Cloud clearing, ice, snow, vegetation monitoring
	S6	2.25	0.05	Vegetation state and cloud clearing
(fire	S7	3.74	0.38	SST, LST, Active fire
-	S8	10.85	0.9	SST, LST, Active fire
	S9	12	1	SST, LST

0.38

0.9

Width

(um)

0.02

0.02

Function

Cloud screening, vegetation

monitoring, aerosol

NDVI, vegetation monitoring,

Active fire

Active fire

Band A centre

S1

S2

 (μm)

0.555

0.659

3.74

10.85

F1

F2

eo4geo

Res.

(m)

500

1000

Comments

Thermal infra-red Ambient

bands (200 K - 320 K)

Thermal infra-red fire emission bands

Solar reflectance

bands

Visible

Near IR

Short-Wave IR

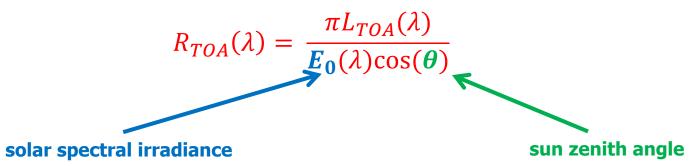
Data

Day *S3A_SL_1_RBT___20170618T104548_20170618T104848_20170619T154448_0179_019_051_2340_LN2_0_NT_002* Night

*S3A_SL_1_RBT____20170618*T220242_20170618T220542_20170620T020303_0179_019_058_6599_LN2_0_NT_002

The Exercise

We will use the following open-source SW:


- SNAP freely available from the ESA STEP website
- QGIS freely available from the <u>QGIS project website</u>

Let's start!

Radiance vs. Reflectance

• The conversion from TOA radiance (L_{TOA}) to TOA reflectance (R_{TOA}) is defined by the following equation:

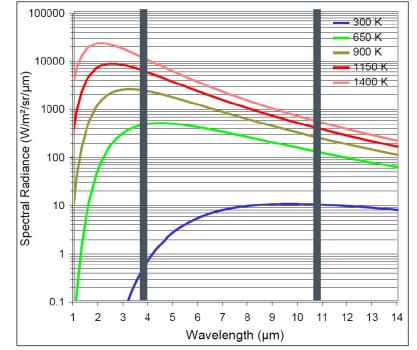
- **Radiance** directly measured by remote sensing instruments. It is the amount of light seen by instrument from an object [mW*m^{-2*}sr^{-1*}nm⁻¹].
- **Reflectance** is the ratio (percentage) of the amount of light leaving a target to the amount of light arriving to the target. It is the property of the observed object/material.

Cloud Mask - DAY

• We will use simple cloud test developed for daytime fire detection by Giglio et al. (2003b).

 $\{ (\rho_{0.65} + \rho_{0.86} > 0.9) OR (T_{12} < 265 K) \}$ OR $\{ (\rho_{0.65} + \rho_{0.86} > 0.7) AND (T_{12} < 285 K) \}$

- Where, $\rho\lambda$ and $T\lambda$ correspond to reflectance and thermal bands (brightness temp.) at certain wavelength (λ [µm]).
- **Brightness temperature** the temperature (K) of a black body "emitting" the same amount of radiance as the target pixel


Active Fire detection

 Active fire signature is the result of the large difference in blackbody radiation at 4µm and 11µm emitted at vegetation combustion temperatures

Image:

- Earth ambient temperature (300 K) and a range of possible vegetation fire temperatures (650 – 1400 K).
- The approximate central wavelengths of the Sentinel-3 SLSTR MIR (3.74µm) and TIR (10.85µm) channel are also indicated.

Credits: Sentinel-3 Active Fire: Fire Detection and Fire Radiative Power Assessment (ESA)

CCI Land Cover 2015

Label	Colour	Value	Freque
0 No data		0	0.000%
10 Cropland, rainfed		10	0.000%
11 Herbaceous cover		11	0.000%
12 Tree or shrub cover		12	0.000%
20 Cropland, irrigated or post?		20	0.000%
30 Mosaic cropland (>50%) / n		30	0.000%
40 Mosaic natural vegetation (40	0.000%
50 Tree cover, broadleaved, e		50	0.000%
50 Tree cover, broadleaved, d		60	0.000%
51 Tree cover, broadleaved, d		61	0.000%
52 Tree cover, broadleaved, d		62	5.705%
70 Tree cover, needleleaved,		70	10.054%
71 Tree cover, needleleaved,		71	2.492%
72 Tree cover, needleleaved,		72	0.000%
30 Tree cover, needleleaved,		80	0.000%
B1 Tree cover, needleleaved,		81	0.000%
32 Tree cover, needleleaved,		82	0.000%
0 Tree cover, mixed leaf type		90	0.000%

100 Mosaic T and shrub (>50	100	0.000%
110 Mosaic herbaceous cover (110	0.000%
120 Shrubland	120	2.692%
121 Shrubland evergreen	121	0.000%
122 Shrubland deciduous	122	0.000%
130 Grassland	130	0.000%
140 Lichens and mosses	140	0.000%
150 Sparse vegetation (tree, s	150	0.000%
151 Sparse tree (<15%)	151	0.000%
152 Sparse shrub (<15%)	152	0.000%
153 Sparse herbaceous cover	153	0.000%
160 Tree cover, flooded, fresh	160	0.000%
170 Tree cover, flooded, salin	170	5.668%
180 Shrub or herbaceous cove	180	0.000%
190 Urban areas	190	0.000%
200 Bare areas	200	0.000%
201 Consolidated bare areas	201	0.000%
202 Unconsolidated bare areas	202	0.000%
210 Water bodies	210	0.000%
220 Permanent snow and ice	220	0.000%

	DAY	NIGHT
Initial test	T ₄ > <mark>325</mark> Κ	T ₄ > 315 Κ
Eliminate warm background	$(T_4 - T_{11}) > 18 K$	$(T_4 - T_{11}) > 15 K$
Eliminate clouds	cloud_mask == 0	cloud_mask == 0
Eliminate non- forest pixels	<i>'land_cover_CCILandCover- 2015' >= 50 and 'land_cover_CCILandCover- 2015' <= 130</i>	<i>'land_cover_CCILandCover- 2015' >= 50 and 'land_cover_CCILandCover- 2015' <= 130</i>

Contact

Trainer:

- Tereza Roth: <u>eotraining@serco.com</u>
- Training Webpage:
 - <u>http://www.eo4geo.eu/training-actions/active-fire-detection-with-</u> <u>sentinel-3-data/</u>
- Serco EO Training website:
 - <u>https://eotraining-serco.com/</u>
 - Step-by-step tutorial <u>https://eotraining-serco.com/tutorials/active-</u> <u>fire-detection-with-sentinel-3/</u>

Please type your questions to the GoToWebinar Questions tab.

Thank you for joining!

