Fundaments of Optical Remote Sensing

Introductory Course



Fundaments of Optical Remote Sensing


Module 1


Matter Radiation Interaction


Remote sensing or what ?

In our case we will consider only Space Technologies suitable for:

Telerilevamento (from the Vocabulary of Italian Language, Treccani, 2000)
Télédétection in French language


"...long-distance detection of the appearance and the situation of a territory, particularly its weather and environmental conditions ... its natural resources (forests, water, etc..) usually by air or, now, almost exclusively from artificial satellites... "equipped with sensors sensitive to different types of electromagnetic waves.

SONAR (Sound Navigation And Ranging) SONAR (Sound Navigation And Ranging) LIDAR (LIght Detection And Ranging) SONAR (Sound Navigation And Ranging) RADAR (RAdio Detection And Ranging) SONAR (Sound Navigation And Ranging)
SONAR (Sound Navigation And Ranging) LIDAR (LIght Detection And Ranging) RADAR (RAdio Detection And Ranging)

THEORETICAL TOOLS:
Basic Definitions and Physical Laws

Solid angle Ω

The solid angle \(\Omega\) is the ratio of the area \(\sigma\) intercepted on the surface of a sphere of radius R by a cone with the vertex in the center of the sphere and the square of the sphere radius (\(R^2\)). The measuring unit is the steradian [sr]

\(\bbox[5px, border: 2px solid #2D5595]{\Omega = \frac{\sigma}{R^2}}\)

\(\Omega=\frac{\sigma}{R^2}=\frac{\sigma '}{R^{ '2}}\)

In the case of a sphere:

\(\Omega = \frac{\sigma}{R^2}=\frac{4\pi R^2}{R^2}=4\pi sr\)

Monochromatic Radiance

The monochromatic radiance represents the energy collected in a unit of time and solid angle when the unit of surface of a detector is crossed by e.m. radiation of wavelength in between \(\lambda\) and \(\lambda + d\lambda\) and directed orthogonally to the surface A.

Hortogonally Incident Radiation



\(\bbox[5px, border: 2px solid #2D5595]{I_\lambda = \frac{dE_\lambda}{dt \cdot dA \cdot d\lambda \cdot d\Omega}} \) \( [I_\lambda]=[Watt \cdot m^{-2} \mu m^{-1} sr^{-1}]\)




\( dE_\lambda=\)energy, [J]; \(dt=\)time[s]; \(dA=\)collecting area [\(m^2\)];
\(d_\lambda=\)wavelength interval [\(\mu m\)]; \(d\Omega=\)collecting solid angle [ster]

In general \( \Theta \ne 0\)

\(\bbox[15px, border: 2px solid #003366]{I_\lambda = \frac{dE_\lambda}{dt \cdot dA \cdot \cos{\Theta} \cdot d\lambda \cdot d\Omega}} \)

From sensors to radiation sources

To the sensor From the source EXEMPLE:THE SUN
RADIANT POWER

\(f = dE / dt\)

[W]
LUMINOSITY

\(f = dE / dt\)

[W]
Ex.: Sun Luminosity

\(f = 3.90 \times 10^{26} W\)

IRRADIANCE

\(F = dE / dt / dA\)

\([W m^{-2}]\)
(RADIANT) EXISTANCE

\(F = dE / dt /dA\)

\([W m^{-2}]\)
Ex: Sun Exitance for a Sun radius \(R = 7 \times 10^8m\)

\(F(Sun) = \frac{3.90 \times 10^{26}}{4\pi (7 \times 10^8)^2} = 6.34 \times 10^7 W m^{-2}\)
RADIANCE

\(I = dE / dt / d\Omega\)

\([W m^{-2}st^{-1}]\)
RADIANCE (BRILLANCE)

\(I = dE / dt / dA / d\Omega\)

\([W m^{-2}st^{-1}]\)
Ex.: Radiance leaving from Sun surface
(assumed Lambertian i.e. isotropic)


\(I = F/\pi = 2.02 \times 10^7 W m^{-2} st^{-1}\)

Inverse square law

\(f_\lambda=\frac{dE_\lambda}{dt \cdot d\lambda \cdot}=\int F_\lambda dA = \int dA \int I_\lambda(\Theta, \phi) cos\Theta d\Omega\)

\(f_\lambda =\) cost \(\leftarrow\) cons. of the Energy

\(f_\lambda = F_\lambda \int dA = F_\lambda \cdot 4\pi d^2 = F_\lambda^{'} \cdot 4\pi d^{'2} = f_\lambda^{'}\)

for a punctual Lambertian source

\(F_\lambda (d) = \frac{f_\lambda}{4\pi d^2}\)

\(F_\lambda(d) \propto \frac{f_\lambda}{d^2}\)

\(\frac{F_\lambda (d_2)}{F_\lambda (d_1)} = \frac{d_1^2}{d_2^2}\)

Blackbody Radiation

Planck's function





\(\bbox[5px, border: 2px solid #003366]{B_\lambda(T) = \frac{2~~h~~c^2}{\lambda^5(e^{\frac{h~~c}{\lambda~~k~~T}}-1)}}\)

\(B_\lambda(T)=\) monochromatic radiance emitted at the
wavelength \(\lambda\) by a blackbody at the absolute
temperature \(T [W/m^3]\)
\(c=2.998 \cdot 10^8 m/s\) speed of light in the vacuum
\(h=6.626 \cdot 10^{-34} Js\) Planck’s constant
\(k=1.380 \cdot 10^{-23} J/K\) Boltzman constant

Reyleigh-Jeans approximation


\(B_\lambda=\frac{2~~h~~c^2}{\lambda^5{(e^{\frac{h~~c}{\lambda~~k~~T}}-1)}}\) if \(\lambda>0.001m\)      \(T\)~\(300K\)

Planck

\(x=\frac{h~~c}{\lambda~~k~~T}\rightarrow 0\)

\(e^x = 1 + x + ....\) Taylor

\(e^{\frac{h~~c}{\lambda~~k~~T}}\approx 1 + \frac{h~~c}{\lambda~~k~~T}\)


\(B_\lambda(T)\approx \frac{2~~h~~c^2}{\lambda^5(1+\frac{h~~c}{\lambda~~k~~T}-1)}\)

\(\bbox[5px, border: 1px solid #003366, #CCCCFF]{B_\lambda(T) \approx \frac{2 k c T}{\lambda^4} \propto T}\)
Radiation law of
Reyleigh-Jeans

Emissivity

\(B_\lambda(T) = \frac{2~~h~~c^2}{\lambda^5(e^{\frac{h~~c}{\lambda~~k~~T}}-1)}\)
Thermally emitted radiation \(\bbox[5px, border: 2px solid #008080]{I_\lambda(T)=\epsilon_\lambda B_\lambda(T)}\)
Emissivity \(\bbox[5px, border: 2px solid #2D5595]{\epsilon_\lambda = \frac{I_\lambda(T)}{B_\lambda(T)} \leq 1}\)

Brightness Temperature

Planck's function
\(\bbox[5px, border: 2px solid #003366]{B_\lambda(T) = \frac{2~~h~~c^2}{\lambda^5(e^{\frac{h~~c}{\lambda~~k~~T}}-1)}}\)

Blackbody Temperature
\(\bbox[5px, border: 2px solid #003366]{T = \frac{hc}{\lambda k} \frac{1}{\ln[1+\frac{2~hc^2}{\lambda^5 B_\lambda(T)}]}}\)

Brightness Temperature
\(\bbox[5px, border: 2px solid #003366]{T_B = \frac{hc}{\lambda k} \frac{1}{\ln[1~+~\frac{2~hc^2}{\lambda^5 I_\lambda(T)}]}}\)

\(\bbox[5px, border: 2px solid #2D5595]{T_B \leq T}\)

Brightness Temperature

Exercise: Moon surface temperature

\( T_s = \frac{hc}{\lambda~k} \frac{1}{\ln[1~+~\frac{2~hc^2}{\lambda^5~I_\lambda(T)}]} \)

\( \bbox[5px, border: 2px solid #003366]{I_{\lambda=10\mu} = 3 \cdot 10^4 erg \cdot s^{-1} \cdot cm^{-2} \mu m^{-1} sr^{-1}}\)

monochromatic radiance emitted at the
wavelength \( \lambda = 10\mu \) by he Moon surface
\( c\sim 3 \cdot 10^{10} cm/s\) speed of light in the vacuum
\( h\sim 6,6 \cdot 10^{-27} erg \cdot s\) Planck's constant
\( k\sim 1,4 \cdot 10^{-16} erg/K\) Boltzman constant











Brightness Temperature

\(T_B = \frac{hc}{\lambda k} \frac{1}{\ln[1~+~\frac{2~hc^2}{\lambda^5 I_\lambda(T)}]} = \frac{6,6 ~\cdot~ 10^{-27} erg ~\cdot~ s ~\cdot~ 3 ~\cdot~ 10^{10} cm~/~s}{10 ~\cdot~ 10^{-4} cm ~\cdot~ 1,4 ~\cdot~ 10^{-16} erg~/~K} \frac{1}{\ln[1~+~\frac{2 ~\cdot~ 6,6 ~\cdot~ 10^{-27} erg ~\cdot~ s ~\cdot~ (3 ~\cdot~ 10^{10})^2 cm^2 / s^2}{10 \mu m ~\cdot~ (10 ~\cdot~ 10^{-4} cm)^4 ~\cdot~ 3 ~\cdot~ 10^4 erg ~\cdot~ s^{-1} ~\cdot~ cm^{-2} \mu m^{-1} sr^{-1}}]}=\)
\(=\frac{6,6~\cdot~3~\cdot~10^2}{1,4}\frac{1}{\ln[1~+~\frac{2~\cdot~6,6~\cdot~9}{3}sr]}K= \frac{6,6~\cdot~3~\cdot~10^2}{1,4}\frac{1}{3,7}K \approx 382~K\)
\( \bbox[5px, border: 2px solid #2D5595]{T \geq T_B}\)

Brightness Temperature

Exercise: Earth's surface temperature



\( \bbox[5px, border: 2px solid #003366]{I_{\lambda=10\mu} = 10^4 erg \cdot s^{-1} \cdot cm^{-2} \mu m^{-1} sr^{-1}}\)

monochromatic radiance emitted at the
wavelength \( \lambda = 10\mu \) by he Moon surface
\( c\sim 3 \cdot 10^{10} cm/s\) speed of light in the vacuum
\( h\sim 6,6 \cdot 10^{-27} erg \cdot s\) Planck's constant
\( k\sim 1,4 \cdot 10^{-16} erg/K\) Boltzman constant











Brightness Temperature

\(T_B = \frac{hc}{\lambda k} \frac{1}{\ln[1~+~\frac{2~hc^2}{\lambda^5 I_\lambda(T)}]} = \frac{6,6 ~\cdot~ 10^{-27} erg ~\cdot~ s ~\cdot~ 3 ~\cdot~ 10^{10} cm~/~s}{10 ~\cdot~ 10^{-4} cm ~\cdot~ 1,4 ~\cdot~ 10^{-16} erg~/~K} \frac{1}{\ln[1~+~\frac{2 ~\cdot~ 6,6 ~\cdot~ 10^{-27} erg ~\cdot~ s ~\cdot~ (3 ~\cdot~ 10^{10})^2 cm^2 / s^2}{10 \mu m ~\cdot~ (10 ~\cdot~ 10^{-4} cm)^4 ~\cdot~ 1 ~\cdot~ 10^4 erg ~\cdot~ s^{-1} ~\cdot~ cm^{-2} \mu m^{-1} sr^{-1}}]}=\)
\(=\frac{6,6~\cdot~3~\cdot~10^2}{1,4}\frac{1}{\ln[1~+~\frac{2~\cdot~6,6~\cdot~9}{1}sr]}K= \frac{6,6~\cdot~3~\cdot~10^2}{1,4}\frac{1}{4,8}K \approx 296~K\)
\( \bbox[5px, border: 2px solid #2D5595]{T \geq T_B}\)

Brightness Temperature

(Reyleigh-Jeans approximation)

Planck's function
\(\bbox[5px, border: 2px solid #003366]{B_\lambda(T) \approx \frac{2~kcT}{\lambda^4} ~\propto~T}\)

Blackbody Temperature
\(\bbox[5px, border: 2px solid #003366]{T \approx \frac{\lambda^4}{2~kc} B_\lambda(T)}\)

\( T_B \approx \frac{\lambda^4}{2kc}I_\lambda(T)\approx\frac{\lambda^4}{2kc}\epsilon_\lambda B_\lambda(T)\approx\frac{\lambda^4}{2kc}\epsilon_\lambda\frac{2kc}{\lambda^4}T=\epsilon_\lambda T\)

\(\bbox[5px, border: 2px solid #2D5595]{T_B\sim\epsilon_\lambda T}\) \(\bbox[5px, border: 2px solid #2D5595]{T_B\leq T}\)

Wien's Displacement Law

\(\bbox[5px, border: 2px solid #2D5595]{\lambda_{MAX}(\mu m)=\frac{2898}{T(K)}}\)





Wien's Displacement Law


Wien's Displacement Law

Exercise: choosing the best spectral range


Earth surface \(T=300K\)

\(\lambda_{MAX}=10\mu m=\)TIR


fires, lava flows \(T=800~~-1000~K\)

\(\lambda_{MAX}=3-4\mu m = \)MIR


Sun photosphere \(T=6000~K\)

\(\lambda_{MAX} = 0,5\mu m =\) VIS

\(\lambda_{MAX}(\mu m)\approx\frac{3000}{T(K)}\)

Matter/Radiation Interaction


Conservation of the Energy
\(\bbox[5px, border: 1px solid black]{E_i = E_{rif} + E_{ads} + E_{tras}}\)

Matter/Radiation Interaction

Conservation of the energy
\(\bbox[5px, border: 1px solid black]{E_{rif} + E_{ads} + E_{trans} = E_i}\)

\(\bbox[5px, border: 1px solid black]{I_\lambda^R + I_\lambda^A + I_\lambda^T = I_\lambda^I}\)

\(\bbox[5px, border: 1px solid black]{\frac{I_\lambda^R}{I_\lambda^I}+\frac{I_\lambda^A}{I_\lambda^I}+\frac{I_\lambda^T}{I_\lambda^I}=\frac{I_\lambda^I}{I_\lambda^I}=1}\)

\(\rho_\lambda=\frac{I_\lambda^R}{I_\lambda^I}\)

\(\alpha_\lambda=\frac{I_\lambda^A}{I_\lambda^I}\)

\(\Im_\lambda=\frac{I_\lambda^T}{I_\lambda^I}\)

Reflectance


Absorbance


Transmittance

monochromatic


\(\bbox[5px, border: 1px solid black]{\rho_\lambda+\alpha_\lambda+\Im_\lambda = 1}\)

Spectral Signatures in the laboratory

\(\bbox[5px, border: 1px solid black]{\rho_\lambda=\frac{I_\lambda^D}{I_\lambda^S}}\)



\(\bbox[5px, border: 1px solid black]{\epsilon_\lambda=\frac{I_\lambda^D}{B_\lambda(T)}}\)



\(\bbox[5px, border: 1px solid black]{\Im_\lambda=\frac{I_\lambda^D}{I_\lambda^S}}\)

Kirchoff law

     at the thermodynamic equilibrium:

\(\bbox[15px, border: 2px solid blue, white]{\epsilon_\lambda = \alpha_\lambda}\)
\(\bbox[15px, border: 1px solid black]{\rho_\lambda+\alpha_\lambda + \Im_\lambda = 1}\) \(\bbox[15px, border: 1px solid black]{\rho_\lambda+\epsilon_\lambda + \Im_\lambda = 1}\)
for not transparent materials: \(\Im_\lambda \approx 0\) \(\bbox[5px, border: 1px solid black]{\rho_\lambda + \alpha_\lambda = 1}\)





at the termodynamic equilibrium (Kirchoff)

\(\bbox[15px, border: 1px solid black]{\epsilon_\lambda = \alpha_\lambda = 1 - \rho_\lambda}\)

Our daily remote sensing experience
in the visible (VIS) spectral range



Newton prism and light colors

Our daily remote sensing experience

What?


How?

What? better?

How?

Measuring reflectances in the laboratory

\(\bbox[5px, border: 1px solid black]{\rho_\lambda=\frac{I_\lambda^R}{I_\lambda^I}}\) Reflectance

Measuring reflectances in the laboratory

\(\bbox[5px, border: 1px solid black]{\rho_\lambda = \frac{I_\lambda^R}{I_\lambda^I}}\) Reflectance

Measuring reflectances in the laboratory

Beyond visible.

visible and....

Aerial color picture

beyond visible....

the vegetation “colour” is (near) infrared more than green !

Infrared aerial color picture

TUTORIAL RGB Landsat-ETM


  • RGB true color on MODIS image

  • RGB false color to enhance vegetation (RED → NIR)

Measuring reflectances in the laboratory

Which "colors"
beyond visible?

Measuring reflectances in the lab & in the field

(Field Spec ASD Spectrometer)


Spectral signatures of soil, water,
vegetation (in reflectance)


Spectral signature of water

\(\bbox[5px, border: 1px solid black]{\rho_\lambda + \alpha_\lambda + \Im_\lambda = 1}\)

Hight transmittance

Very low transmittance


Spectral signatures of (clean/turbid) water
(in reflectance)


Spectral signatures of snow
(in reflectance)


Spectral signatures of snow and Clouds
(in reflectance)

  • TUTORIAL
          RGB MODIS FOR
          DISCRIMINATING SNOW FROM
          CLOUDS

  • Spectral signatures of soil, water,
    vegetation (in reflectance)


    Spectral signatures of vegetation
    (in reflectance)


    Spectral signatures of vegetation

    \(\bbox[5px, border: 1px solid black]{\rho_\lambda + \alpha_\lambda + \Im_\lambda = 1}\)
    Total
    Chlorophyll
    Concentration
    (\(\mu g \, cm^{-2}\))

    Monitoring vegetation disease


    Spectral signatures of vegetation

    \(\bbox[5px, border: 1px solid black]{\rho_\lambda + \alpha_\lambda + \Im_\lambda = 1}\)

    Spectral signatures of vegetation
    (reflectance) and water (absorption)


    Water depth
    [\(cm^{2}\)]

    Spectral signatures of vegetation in
    different condition of water stress
    water content %



    Measuring reflectances in the lab & in the field

    (Field Spec ASD Spectrometer)




    \(\bbox[15px, yellow]{NDVI = \frac{R_{NIR}-R_{VIS}}{R_{NIR} + R_{VIS}}}\)

    NDVI

    (Normalized Difference Vegetation Index)


  • TUTORIAL


          on NDVI computation and applications

  • Example of NDVI reduction after fires

    High
    NDVI
    Mid
    Low
    Burned Areas Wooded (ha) Mixed Covers (ha)
    A - Motta S.Giovanni e Melito di Porto Salvo 141 3320
    B - Bova e Bova Marina 3600 3300
    C - Grotteria e Roccella Ionica 1150 2413
    D - Bivongi 500 1000

    Applications

    Vegetation (Normalised Difference Vegetation Index)


    \(\bbox[15px, yellow]{NDVI = \frac{R_{NIR}-R_{VIS}}{R_{NIR} + R_{VIS}}}\)

    Problems?


    Clouds, Atmospheric Effects, View Angle Effects


    Solution?




    Maximum Value Composite (MVC)



    1 2 3 4 5
    MAX (1,2,3,4,5)

    SEASONAL CHANGE AT REGIONAL SCALE


      JUNE     NOVEMBER  

    CLOUDS 0.0 0.15 0.25 0.35 0.45 0.55 0.60 0.70

    \(\bbox[15px, yellow]{NDVI = \frac{R_{NIR}-R_{VIS}}{R_{NIR} + R_{VIS}}}\)

    Applications

    Vegetation (Normalized Difference Vegetation Index


    MONITORING OF DEFORESTATION

    \(\bbox[15px, yellow]{NDVI = \frac{R_{NIR}-R_{VIS}}{R_{NIR} + R_{VIS}}}\)

    Applications

    Vegetation (Normalized Difference Vegetation Index)

    MONITORING OF DESERTIFICATION

    From the analysis
    of long (ten-year) time
    series of NDVI

    Seasonal change at continental scale

    A. April 12-May 2, 1982;
    B. B. July 5-25, '82;
    C. Sept. 27-Oct. 17, '82;
    D. Dec. 20, '82-Jan. 9, '83


    \(\bbox[15px, yellow]{NDVI = \frac{R_{NIR}-R_{VIS}}{R_{NIR} + R_{VIS}}}\)

    Spectral signatures of vegetation

    \(\bbox[5px, border: 1px solid black]{\rho_\lambda + \alpha_\lambda + \Im_\lambda = 1}\)

    high transmittance


    Dependence of reflected radiation on
    vegetation density (Leaf Area Index)

    Reflectance increases with vegetation
    density where transmittance is higher





    Spectral signatures of vegetation
    (in reflectance)


    Spectral signatures of soil, water,
    vegetation (in reflectance)


    Spectral signatures of different soils
    (in reflectance)
    Mixing



    Atoms and molecule adsorb and emits at specific wavelength

    atomic spectra molecular spectra

    \(\frac{Ze^2}{r^2} = \frac{mv^2}{r} ~~~\Rightarrow~~~ r=\frac{Ze^2}{mv^2}\)

    \(l_n = mvr_n = n\hbar ~~~\Rightarrow~~~ r_n = \frac{n^{2}\hbar^{2}}{me^2Z}\)

    \(E=-\frac{Ze^2}{r}+\frac{1}{2}mv^2=-\frac{1}{2}\frac{Ze^2}{r}\)

    \(E_n = -\frac{m_e e^4}{2\hbar^2} \cdot \left(\frac{1}{n^2}\right)Z^2\)

    \(E_n = -\frac{m_e e^4}{2\hbar^2} \cdot \left(\frac{1}{n^2}\right)Z^2~~~\)energy of Bohr orbit

    \(v_{jk} = R \cdot \left(\frac{1}{n_j^2}-\frac{1}{n_k^2}\right)Z^2\)

    with      \(R=\)      Rydberg constant \(~~~=\frac{2 \cdot \pi^2 \cdot m_e \cdot e^4}{h^3}\)

    \(E_{mol}=E_{trasl}+E_{ele}+E_{vib}+E_{rot}\)

    \(E_{trasl}~\propto~KT\)

    \(E_{vib}^v = \hbar\sqrt{\frac{K}{\mu}}\left(V+\frac{1}{2}\right)~~~\Delta V = \pm 1\)     with overtones

    \(E_{rot}^J = \frac{\hbar^2}{2I}J(J+1)~~~\Delta J=\pm 1\)

    \(v_{jk} = \frac{E_k-E_j}{h}\)

    Basic principle of multi-spectral
    remote sensing

    • Every material emits, absorbs, transmits or reflects differently at different wavelengths, the em radiation, according to their chemical and physical characteristics

    • The spectral response curve represents, in this sense, its spectral signature

    • The availability of multi-spectral observations allows, in theory, to trace back to the chemical and physical characteristics of the material that has emitted, absorbed, transmitted or reflected measured em radiation.

    From the lab
    to the space.


    From ground to space



    beyond visible


    Multispectral digital image






    EO Sensors
    Image systems and multispectral images

    EO Sensors
    Image systems and multispectral images
  • TUTORIAL
          Spectral Signatures from
          MODIS

  • Natural sources of radiation for Earth Observation
    The Sun(only daytime !)
    Wien


    \(\bbox[15px, border: 1px solid black]{\lambda_{MAX}=\frac{2898}{T(K)}\approx\frac{3000}{6000}=0,5\mu m}\) \(T\approx 6000K\)

    Natural sources of radiation for Earth Observation
    The Earth itself (day and night !)
    Wien


    \(\bbox[15px, border: 1px solid black]{\lambda_{MAX}=\frac{2898}{T(K)}\approx\frac{3000}{300}=10\mu m}\) \(T\sim 300K\)

    Solar and Terrestrial radiation

    Peak Wavelength Max. Intensity
    Sun \(0.5\) micrometers \(7.35 \times 10^7 W/m^2\)
    Earth \(10\) micrometers \(390 W/m^2\)

    Natural sources of radiation
    actually available for EO




    Peak Wavelength Max. Intensity
    Sun \(0.5\) micrometers \(7.35 \times 10^7 W/m^2\)
    Earth \(10\) micrometers \(390 W/m^2\)

    Passive Earth Observing Techniques

    Natural source of
    radiation (Sun) different
    from the target

    Diagnostic parameter:
    \(\rho_\lambda\)










    Natural source of
    radiation (Earth)
    coincident with the target

    Diagnostic parameters:
    \(\epsilon_\lambda, T\)


    Active Earth Observing Techniques

    The signal is generated
    by the observation
    system itself

    Diagnostic Parameter

    \(I_\lambda^{back} \propto\) roughness
    \(\frac{c\Delta t}{2}=d=\) distance

    e.g. SAR (Synthetic
    Aperture Radar)

    Different spectral region different capabilities

    This pair of images demonstrates some of the differences between passive and active sensors. The top image is an aerial photograph (which records reflected light) of Amundsen-Scott Station, a research facility built on the South Pole. The bottom image is the same area, at approximately the same scale and orientation, from RADARSAT. RADARSAT is an active remote sensing instrument. Microwaves are generated by the sensor, reflected from the Earth's surface and back to the sensor. The radar image reveals an abandoned cluster of buildings (to the lower left of the bright dome) that are now buried under Antarctic ice. (RADARSAT image courtesy Canadian Space Agency)


    Atoms and molecule in atmosphere interact
    selectively with (modifying) the radiation leaving
    Earth surface and directed toward the sensor.


    Chemical-physical properties of
    atmosphere: temperature profile


    Chemical composition

    Chemical composition of
    atmosphere


    Scattering in the atmosphere

    In general we can have scattering for whatever
    wavelength \(0 < \lambda < \infty \)
    in the atmosphere we have scattering from particle
    having dimension like:






    \(10^{-8} < d < 1 \quad cm\)
    \( [X~rays]~~~~~[microwaves]\)



    What about clouds?






    Attenuation to radiation of
    different wavelengths by
    common atmospheric constituents
    and other particles (Source:
    Tomlinson 1972)


    Extinction of solar radiation
    in the atmosphere


    Atmospheric
    Transmittance and
    atmospheric windows






    LANDSAT-TM all bands in atmospheric windows !



    AVHRR:
    all bands in atmospheric windows !


  • The 5/6 AVHRR channels spectral positions compared
    with corresponding atmospheric transmittance
  • Penetration of e.m. radiation into the matter



    More in depth

    Penetration of em radiation in a medium
    with complex refractive index

  • TUTORIAL


          sediments or shallow water?

  • Sediments or shallow water ?


    LANDSAT -MSS

    Band 4 = Blue    Band 5 = Green    Band 7 = Red


    Multitemporal approach (Di Polito et al., 2016)


    What about clouds?
  • TUTORIAL


          cloud mask
  • Reference list


    K. N. Liou An Introduction to Atmospheric Radiation – Academic Press (2002, 1980)
    R. P. Gupta Remote Sensing Geology, Springer & Verlag, (1991).
    W.G. Rees, Physical Principles of Remote Sensing, Cambridge University Press (1990)
    Il telerilevamento da aereo e da satellite libro Brivio P. A. (cur.) Lechi G. M. (cur.) Zilioli E. (cur.) edizioni Delfino Carlo Editore collana Scienza & tecnica , 1992
    Slide show ends