Telerilevamento
(from the Vocabulary of Italian Language, Treccani, 2000)
Télédétection
in French language
"...long-distance detection of the appearance and the situation of a territory, particularly its
weather and environmental conditions ... its natural resources (forests, water, etc..) usually by air or, now, almost
exclusively from artificial satellites... "equipped with sensors sensitive to different types of electromagnetic waves.
SONAR (Sound Navigation And Ranging) | LIDAR (LIght Detection And Ranging) | RADAR (RAdio Detection And Ranging) |
The solid angle \(\Omega\) is the ratio of the area \(\sigma\) intercepted on the surface of a sphere of radius R by a cone with the vertex in the center of the sphere and the square of the sphere radius (\(R^2\)). The measuring unit is the steradian [sr]
\(\bbox[5px, border: 2px solid #2D5595]{\Omega = \frac{\sigma}{R^2}}\)\(\Omega=\frac{\sigma}{R^2}=\frac{\sigma '}{R^{ '2}}\)
The monochromatic radiance represents the energy collected in a unit of time and solid angle when the unit of surface of a detector is crossed by e.m. radiation of wavelength in between \(\lambda\) and \(\lambda + d\lambda\) and directed orthogonally to the surface A.
Hortogonally Incident RadiationTo the sensor | From the source | EXEMPLE:THE SUN |
RADIANT POWER
\(f = dE / dt\) [W] |
LUMINOSITY
\(f = dE / dt\) [W] |
Ex.: Sun Luminosity
\(f = 3.90 \times 10^{26} W\) |
IRRADIANCE
\(F = dE / dt / dA\) \([W m^{-2}]\) |
(RADIANT) EXISTANCE
\(F = dE / dt /dA\) \([W m^{-2}]\) |
Ex: Sun Exitance for a Sun radius \(R = 7 \times 10^8m\)
\(F(Sun) = \frac{3.90 \times 10^{26}}{4\pi (7 \times 10^8)^2} = 6.34 \times 10^7 W m^{-2}\) |
RADIANCE
\(I = dE / dt / d\Omega\) \([W m^{-2}st^{-1}]\) |
RADIANCE (BRILLANCE)
\(I = dE / dt / dA / d\Omega\) \([W m^{-2}st^{-1}]\) |
Ex.: Radiance leaving from Sun surface (assumed Lambertian i.e. isotropic) \(I = F/\pi = 2.02 \times 10^7 W m^{-2} st^{-1}\) |
\(f_\lambda=\frac{dE_\lambda}{dt \cdot d\lambda \cdot}=\int F_\lambda dA = \int dA \int I_\lambda(\Theta, \phi) cos\Theta d\Omega\)
\(f_\lambda =\) cost \(\leftarrow\) cons. of the Energy
\(f_\lambda = F_\lambda \int dA = F_\lambda \cdot 4\pi d^2 = F_\lambda^{'} \cdot 4\pi d^{'2} = f_\lambda^{'}\)
for a punctual Lambertian source
\(F_\lambda (d) = \frac{f_\lambda}{4\pi d^2}\)
\(F_\lambda(d) \propto \frac{f_\lambda}{d^2}\)
\(\frac{F_\lambda (d_2)}{F_\lambda (d_1)} = \frac{d_1^2}{d_2^2}\)
\(B_\lambda(T)=\) monochromatic radiance emitted at the
wavelength \(\lambda\) by a blackbody at the absolute
temperature \(T [W/m^3]\)
\(c=2.998 \cdot 10^8 m/s\) speed of light in the vacuum
\(h=6.626 \cdot 10^{-34} Js\) Planck’s constant
\(k=1.380 \cdot 10^{-23} J/K\) Boltzman constant
\(x=\frac{h~~c}{\lambda~~k~~T}\rightarrow 0\)
\(e^x = 1 + x + ....\) Taylor
\(e^{\frac{h~~c}{\lambda~~k~~T}}\approx 1 + \frac{h~~c}{\lambda~~k~~T}\)
Planck's function
\(\bbox[5px, border: 2px solid #003366]{B_\lambda(T) = \frac{2~~h~~c^2}{\lambda^5(e^{\frac{h~~c}{\lambda~~k~~T}}-1)}}\)
Blackbody Temperature
\(\bbox[5px, border: 2px solid #003366]{T = \frac{hc}{\lambda k} \frac{1}{\ln[1+\frac{2~hc^2}{\lambda^5 B_\lambda(T)}]}}\)
Brightness Temperature
\(\bbox[5px, border: 2px solid #003366]{T_B = \frac{hc}{\lambda k} \frac{1}{\ln[1~+~\frac{2~hc^2}{\lambda^5 I_\lambda(T)}]}}\)
\( T_s = \frac{hc}{\lambda~k} \frac{1}{\ln[1~+~\frac{2~hc^2}{\lambda^5~I_\lambda(T)}]} \)
\( \bbox[5px, border: 2px solid #003366]{I_{\lambda=10\mu} = 3 \cdot 10^4 erg \cdot s^{-1} \cdot cm^{-2} \mu m^{-1} sr^{-1}}\)
monochromatic radiance emitted at the
wavelength \( \lambda = 10\mu \) by he Moon surface
\( c\sim 3 \cdot 10^{10} cm/s\) speed of light in the vacuum
\( h\sim 6,6 \cdot 10^{-27} erg \cdot s\) Planck's constant
\( k\sim 1,4 \cdot 10^{-16} erg/K\) Boltzman constant
\( \bbox[5px, border: 2px solid #003366]{I_{\lambda=10\mu} = 10^4 erg \cdot s^{-1} \cdot cm^{-2} \mu m^{-1} sr^{-1}}\)
monochromatic radiance emitted at the
wavelength \( \lambda = 10\mu \) by he Moon surface
\( c\sim 3 \cdot 10^{10} cm/s\) speed of light in the vacuum
\( h\sim 6,6 \cdot 10^{-27} erg \cdot s\) Planck's constant
\( k\sim 1,4 \cdot 10^{-16} erg/K\) Boltzman constant
Planck's function
\(\bbox[5px, border: 2px solid #003366]{B_\lambda(T) \approx \frac{2~kcT}{\lambda^4} ~\propto~T}\)
Blackbody Temperature
\(\bbox[5px, border: 2px solid #003366]{T \approx \frac{\lambda^4}{2~kc} B_\lambda(T)}\)
Earth surface \(T=300K\)
\(\lambda_{MAX}=10\mu m=\)TIR
fires, lava flows \(T=800~~-1000~K\)
\(\lambda_{MAX}=3-4\mu m = \)MIR
Sun photosphere \(T=6000~K\)
\(\lambda_{MAX} = 0,5\mu m =\) VIS
Conservation of the energy
\(\bbox[5px, border: 1px solid black]{E_{rif} + E_{ads} + E_{trans} = E_i}\)
\(\bbox[5px, border: 1px solid black]{I_\lambda^R + I_\lambda^A + I_\lambda^T = I_\lambda^I}\)
\(\bbox[5px, border: 1px solid black]{\frac{I_\lambda^R}{I_\lambda^I}+\frac{I_\lambda^A}{I_\lambda^I}+\frac{I_\lambda^T}{I_\lambda^I}=\frac{I_\lambda^I}{I_\lambda^I}=1}\)
\(\rho_\lambda=\frac{I_\lambda^R}{I_\lambda^I}\)
\(\alpha_\lambda=\frac{I_\lambda^A}{I_\lambda^I}\)
\(\Im_\lambda=\frac{I_\lambda^T}{I_\lambda^I}\)
Reflectance
Absorbance
Transmittance
\(\bbox[5px, border: 1px solid black]{\rho_\lambda=\frac{I_\lambda^D}{I_\lambda^S}}\)
\(\bbox[5px, border: 1px solid black]{\epsilon_\lambda=\frac{I_\lambda^D}{B_\lambda(T)}}\)
\(\bbox[5px, border: 1px solid black]{\Im_\lambda=\frac{I_\lambda^D}{I_\lambda^S}}\)
at the thermodynamic equilibrium:
\(\bbox[15px, border: 2px solid blue, white]{\epsilon_\lambda = \alpha_\lambda}\)Burned Areas | Wooded (ha) | Mixed Covers (ha) |
---|---|---|
A - Motta S.Giovanni e Melito di Porto Salvo | 141 | 3320 |
B - Bova e Bova Marina | 3600 | 3300 |
C - Grotteria e Roccella Ionica | 1150 | 2413 |
D - Bivongi | 500 | 1000 |
A. April 12-May 2, 1982;
B. B. July 5-25, '82;
C. Sept. 27-Oct. 17, '82;
D. Dec. 20, '82-Jan. 9, '83
\(\frac{Ze^2}{r^2} = \frac{mv^2}{r} ~~~\Rightarrow~~~ r=\frac{Ze^2}{mv^2}\)
\(l_n = mvr_n = n\hbar ~~~\Rightarrow~~~ r_n = \frac{n^{2}\hbar^{2}}{me^2Z}\)
\(E=-\frac{Ze^2}{r}+\frac{1}{2}mv^2=-\frac{1}{2}\frac{Ze^2}{r}\)
\(E_n = -\frac{m_e e^4}{2\hbar^2} \cdot \left(\frac{1}{n^2}\right)Z^2\)
\(E_n = -\frac{m_e e^4}{2\hbar^2} \cdot \left(\frac{1}{n^2}\right)Z^2~~~\)energy of Bohr orbit
\(v_{jk} = R \cdot \left(\frac{1}{n_j^2}-\frac{1}{n_k^2}\right)Z^2\)
with
\(R=\)
Rydberg constant
\(~~~=\frac{2 \cdot \pi^2 \cdot m_e \cdot e^4}{h^3}\)
\(E_{mol}=E_{trasl}+E_{ele}+E_{vib}+E_{rot}\)
\(E_{trasl}~\propto~KT\)
\(E_{vib}^v = \hbar\sqrt{\frac{K}{\mu}}\left(V+\frac{1}{2}\right)~~~\Delta V = \pm 1\) with overtones
\(E_{rot}^J = \frac{\hbar^2}{2I}J(J+1)~~~\Delta J=\pm 1\)
\(v_{jk} = \frac{E_k-E_j}{h}\)
Peak Wavelength | Max. Intensity | |
Sun | \(0.5\) micrometers | \(7.35 \times 10^7 W/m^2\) |
Earth | \(10\) micrometers | \(390 W/m^2\) |
Peak Wavelength | Max. Intensity | |
Sun | \(0.5\) micrometers | \(7.35 \times 10^7 W/m^2\) |
Earth | \(10\) micrometers | \(390 W/m^2\) |
Natural source of
radiation (Sun) different
from the target
Diagnostic parameter:
\(\rho_\lambda\)
Natural source of
radiation (Earth)
coincident with the target
Diagnostic parameters:
\(\epsilon_\lambda, T\)
The signal is generated
by the observation
system itself
Diagnostic Parameter
\(I_\lambda^{back} \propto\) roughness
\(\frac{c\Delta t}{2}=d=\) distance
e.g. SAR (Synthetic
Aperture Radar)
This pair of images demonstrates some of the differences between passive and active sensors. The top image is an aerial photograph (which records reflected light) of Amundsen-Scott Station, a research facility built on the South Pole. The bottom image is the same area, at approximately the same scale and orientation, from RADARSAT. RADARSAT is an active remote sensing instrument. Microwaves are generated by the sensor, reflected from the Earth's surface and back to the sensor. The radar image reveals an abandoned cluster of buildings (to the lower left of the bright dome) that are now buried under Antarctic ice. (RADARSAT image courtesy Canadian Space Agency)
In general we can have scattering for whatever
wavelength \(0 < \lambda < \infty \)
in the atmosphere we have scattering from particle
having dimension like:
\(10^{-8} < d < 1 \quad cm\)
\( [X~rays]~~~~~[microwaves]\)
Attenuation to radiation of
different wavelengths by
common atmospheric constituents
and other particles (Source:
Tomlinson 1972)
Penetration of em radiation in a medium
with complex refractive index
Band 4 = Blue Band 5 = Green Band 7 = Red
Multitemporal approach (Di Polito et al., 2016)