

UNIVERSITÀ DEGLI STUDI DELLA BASILICATA

Airborne dust identification from space: a new, MSG/SEVIRI-based method for air quality assessment

Prof. Valerio Tramutoli valerio.tramutoli@unibas.it

University of Basilicata, School of Engineering, Potenza, Italy

Particular matter PM₁₀

> ANTHROPOGENIC

> NATURAL

- HUMAN HEALTH

High PM₁₀ concentrations...

... are responsible for 6% of total mortality

... cause damage to the cardiovascular and respiratory systems

...impact on reflection and absorption of solar and IR radiation in the atmosphere

... can alter cloud features by acting as condensation nuclei

IMPACTS

SOURCES

> DIRECT

CLIMATE

> INDIRECT

DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL (21/05/2008) on ambient air quality and cleaner air for Europe

ANNEX XI - LIMIT VALUES FOR THE PROTECTION OF HUMAN HEALTH

Article 20 – CONTRIBUTIONS FROM NATURAL SOURCES* Paragraph 2

Where the Commission has been informed of an exceedance attributable to <u>natural sources</u> in accordance with paragraph 1, that <u>excedance shall not be considered as an exceedance</u> for the purposes of this Directive.

<u>* Article 2 – Paragraph: 15</u> Contributions from natural sources' shall mean emissions of pollutants not caused directly or indirectly by human activities, including natural events such as volcanic eruptions, seismic activities, geothermal activities, wild-land fires, high-wind events, sea sprays or the atmospheric re-suspension or transport of natural particles from dry regions

Dust Storm Spectral Signatures

Highly reflecting Solar radiation in the VISible easier to detect over the sea than over land (low contrast)

> A Saharan Dust storm during 03/03/04 on a SEVIRI image

SAND STORM Usually colder than background surfaces (in the Thermal InfraRed .TIR)

SEVIRI RGB

Discriminating meteo from dust clouds the Split Window BTD method

(e.g. Prata. 1989, Gu et al., 2003; Luo et al., 2003)

Dust $\rightarrow T_{11\mu} - T_{12\mu} < 0$

Clouds $\rightarrow T_{11\mu} - T_{12\mu} > 0$

Main meteorological (high repetition) satellite sensors with split window capabilities

Sensor	Spatial Resolution	Temporal Resolution	Satellite	Available since
AVHRR (Global)	1 ,1 K m	6 h	NOAA/ MetOp	1978
MODIS (Global)	0,25 – 1 Km	12 h	EOS	1999
SEVIRI (Europe & Africa) Global by Geosttionary Constellation	1 - 3 Km	15 min.	MSG	2003

Space-Time coverage

Meteosat-8

NOAA & EOS receiving station at IMAA

one image every 3-6 hours

Meteosat & MSG receiving station at UNIBAS

since 2000

) 🚖 EUMETSAT

one image every 5-15 minutes

TRADITIONAL (FIXED THERSHOLD) METHODS FOR DUST-CLOUD DETECTION Split Window BTD method (e.g. Prata. 1989, Gu et al., 2003; Luo et al., 2003) Main issues: false positives

Prata (1989)

14/05/1995: no dust storm present over the scene

Result of a traditional "split-window"-based method

TRADITIONAL (FIXED THERSHOLD) METHODS FOR DUST-CLOUD DETECTION Split Window BTD method (e.g. Prata. 1989, Gu et al., 2003; Luo et al., 2003) Main issues: false positives

ftp://toms.gsfc.nasa.gov/pub/omi/images/aerosol/Y2008/

OMI

TRADITIONAL (FIXED THERSHOLD) METHODS FOR DUST-CLOUD DETECTION Split Window BTD method (e.g. Prata. 1989, Gu et al., 2003; Luo et al., 2003) Main issues: missed detections

SEVIRI 02/02/2008_h 06 UTC

(Prata, 1989)

What does "anomaly" mean ? TRADITIONAL (FIXED THERSHOLD) METHODS

time or distance

What does "anomaly" mean ? lower thresholds increase sensitivity...

time or distance

What does "anomaly" mean? higher thresholds increase reliability...

time or distance

What does "anomaly" mean ?

Time or space

RST (Robust Satellite Technique)

(formerly RAT: Robust AVHRR Techniques, V. Tramutoli, 1998, 2005)

1. Select an historical data-set V(r,t) as homogeneous as possible: same time of the day and period of the year (*T*-domain) in order to reduce natural/observational noise

RST (Robust Satellite Technique)

1. Select an historical data-set V(r,t) as homogeneous as possible: same time of the day and period of the year (*T*-domain) in order to reduce natural/observational noise

2. Compute the *unperturbed* reference fields for the observable $V(\mathbf{r},t)$

RST (Robust Satellite Technique)

1. Select an historical data-set V(r,t) as homogeneous as possible: same time of the day and period of the year (*T*-domain) in order to reduce natural/observational noise

2. Computing the *unperturbed* reference fields for the observable $V(\mathbf{r},t)$

3. Change - Detection at the time t by

20 years of RST Applications

Compared with the background in (normal) clear-sky conditions both meteorological and dust clouds are characterized by:

higher VIS reflectance

$$\otimes_{V} (x, y, t) = \frac{VIS(x, y, t) - VIS_{REF}(x, y)}{\sigma_{VIS}(x, y)}$$

Compared with the background in (normal) clear-sky conditions both meteorological and dust clouds are characterized by:

higher VIS reflectance

$$\bigotimes_{V} (x, y, t) = \frac{VIS(x, y, t) - VIS_{REF}(x, y)}{\sigma_{VIS}(x, y)}$$

lower brightness temperatures

$$\bigotimes_{TIR} (x, y, t) = \frac{TIR(x, y, t) - \mu_{TIR}(x, y)}{\sigma_{TIR}(x, y)}$$

Compared with the background in (normal) clear-sky conditions both meteorological and dust clouds are characterized by:

Split Window Brightness Temperature Differences (11-12 μm) for Thin Cirrus and Dust

but they can be discriminated by using the BTD signature $\Delta T = T_{11\mu} - T_{12\mu}$

higher VIS reflectance

$$\bigotimes_{V} (x, y, t) = \frac{VIS(x, y, t) - VIS_{REF}(x, y)}{\sigma_{VIS}(x, y)}$$

lower brightness temperatures

$$\bigotimes_{TIR} (x, y, t) = \frac{TIR(x, y, t) - \mu_{TIR}(x, y)}{\sigma_{TIR}(x, y)}$$

$$\otimes_{\Delta T} (x, y, t) = \frac{\Delta T(x, y, t) - \mu_{\Delta T}(x, y)}{\sigma_{\Delta T}(x, y)}$$

(RST_{DUST} Sannazzaro et al., Acta Astronautica93(2014) 64–70)

$$\bigotimes_{VIS} (\mathbf{r}, t') \equiv \frac{\left[VIS(\mathbf{r}, t') - \mu_{VIS}(\mathbf{r}) \right]}{\sigma_{VIS}(\mathbf{r})}$$

$$\bigotimes_{TIR} (\mathbf{r}, t') \equiv \frac{\left[TIR(\mathbf{r}, t') - \mu_{TIR}(\mathbf{r}) \right]}{\sigma_{TIR}(\mathbf{r})}$$

$$\bigotimes_{\Delta T} (\mathbf{r}, t') \equiv \frac{\left[\Delta T(\mathbf{r}, t') - \mu_{\Delta T}(\mathbf{r}) \right]}{\sigma_{\Delta T}(\mathbf{r})}$$

Discriminating dust-clouds from meteorological clouds

Detecting Clouds

RST_{DUST} application to the event of May 2008:

comparison with fixed threshold methods and

with independent aerosol products (validation)

Saharan dust event of 18-23 May 2008

During 18-23 May 2008 a massive Saharan dust load coming from Algeria and Tunisia moved towards Europe diffusing over Greece.

• On 18 May, Italy and Central Europe were the regions more affected by dust.

• From 19 May also the Eastern Europe was involved by dust.

•On 20 May the Saharan dust event was more intense over Greece, where it reached a value of dust loading estimated at around 0.75 g/m² (Amiridis, et al., 2009).

SEVIRI satellite data

Spinning Enhanced Visible and InfraRed Imager (SEVIRI) is on board the Meteosat Second Generation (MSG) platform

Channel		Characteristics of			Main gaseous
no.		spectral band (µm)			absorber or window
		$\lambda_{_{cen}}$	$\lambda_{_{min}}$	λ_{max}	
I	VIS0.6	0.635	0.56	0.71	Window
2	VIS0.8	0.81	0.74	0.88	Window
3	NIR1.6	1.64	1.50	1.78	Window
4	IR3.9	3.90	3.48	4.36	Window
5	WV6.2	6.25	5.35	7.15	Water vapor
6	WV7.3	7.35	6.85	7.85	Water vapor
7	IR8.7	8.70	8.30	9.10	Window
8	IR9.7	9.66	9.38	9.94	Ozone
9	IR10.8	10.80	9.80	11.80	Window
10	IR12.0	12.00	11.00	13.00	Window
П	IR13.4	13.40	12.40	14.40	Carbon dioxide
12	HRV	Broadban	d (about ().4 – 1.1)	Window/water vapor

Repeat cycle: 15 min Spatial resolution (sub-satellite point): $3 \times 3 \text{ Km}^2$ ($1 \times 1 \text{ Km}^2 \text{ HRV}$)

Space-time evolution of dust outbreak of 18-23 May 2008 detected by RST_{DUST} on SEVIRI data

probability of dust presence in the atmosphere RST-DUST maps reporting dynamic evolution (at six hours) of dust event which affected Mediterranean basin in May 2008

Comparison with fixed-threshold methods

19/05/2008 06:00 UTC

Luo et al. (2003)

Gu et al. (2003)

 $\Delta T < -0.5k$

POTENZA EARLINET station indicates the presence of dust

Aerosol Index

OMI Aerosol index

indicates the presence

of dust

OMI

Aerosol backscatter coefficient (m-1 sr-1)

man from the

GSFC

RST_{DUST}

Comparison with independent satellite-based aerosol products

19/05/2008 at 09:15 UTC

probability of dust presence in the atmosphere

(10 km spatial resolution)

http://ladsweb.nascom.nasa.gov/data/search.html

Assessment of RST_{DUST} products by means of ground-based lidar profiles (EARLINET data)

Aerosol backscatter coefficient [m-1 sr-1]

Assessment of RST_{DUST} products by means of CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) data

RST-DUST 22/05/2008 at 11:30 UTC

probability of dust presence in the atmosphere

Version: 3.01 Nominal Davtime 532 nm Total Attenuated Backscatter, km 1.0x1 7.0 1.0x1 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 1.0x10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0x10 Lat 28.70 34.78 40.83 46.86 52.85 22.35 58.79 19.14 64.63 14.79 70.31 8.32 75.60 Lon 30.47 28.83 27.00 -2.46

http://www-calipso.larc.nasa.gov/products/lidar/browse_images/production/

Integration of the RST_{DUST} satellite products and PM₁₀ ground measurements

Satellite and ground data used

MSG-SEVIRI

PM₁₀ concentrations from ARPAB (Regional Environment Protection Agency of Basilicata) air quality monitoring ground stations

Time series of ARPAB ground PM₁₀ concentrations

May 2006-2012

✓ Bihourly measurement: air monitoring stations in Rossellino, V. Unicef, V. Firenze, Melfi, S. Nicola-Melfi
 ✓ Daily measurement: air monitoring station in Viggiano

PM₁₀ exceedances (May 2006, May 2008)

Exceedance day	Monitoring station	PM ₁₀ concentrations [µg/m ³]
23 May 2006	Rossellino	51,326
23 May 2006	V. Unicef	74,052
24 May 2006	Rossellino	63,008
24 May 2006	V. Unicef	67,684
19 May 2008	V. Firenze	55,516
27 May 2008	Rossellino	55,082

*Daily limit 50 µg/m³ (Dir 2008/50/CE)

Quantifying natural contribution in PM_{10} (EC, 2011)

Methodology for the determination of re-suspended and transported Saharan dust

1. Identifying Saharan dust outbreak episodes (EC, 2011, suggests consultation of products such as dust-forecast models)

The use of RST_{DUST} product instead of forecast maps is expected to increase reliability of dust events detection

Exceedance day	Monitoring station	PM ₁₀ concentrations [µg/m ³]
23 May 2006	Rossellino	51,326
23 May 2006	V. Unicef	74,052
24 May 2006	Rossellino	63,008
24 May 2006	V. Unicef	67,684
19 May 2008	V. Firenze	55,516
27 May 2008	Rossellino	55,082

EC (2011) - COMMISSION STAFF WORKING PAPER establishing guidelines for demonstration and subtraction of exceedances attributable to natural sources under the Directive 2008/50/EC on ambient air quality and cleaner air for Europe

Quantifying natural contribution in PM_{10} (EC, 2011)

Methodology for the determination of re-suspended and transported Saharan dust

1. Identifying Saharan dust outbreak episodes

2. Quantifying Saharan dust outbreak episodes

Identification of the regional background station

Monitoring station in Melfi

Quantifying natural contribution in PM_{10} (EC, 2011)

Methodology for the determination of re-suspended and transported Saharan dust

1. Identifying Saharan dust outbreak episodes

2. Quantifying Saharan dust outbreak episodes

Dust events in background station (identified by means of RST_{DUST})

Computation of the regional background level:

in each time series of the regional background station, the monthly moving percentile 40 is determined for each day, excluding days with identified African influence.

02/05/2006
06/05/2006
07/05/2006
08/05/2006
12/05/2006
25/05/2006
30/05/2006
02/05/2008
11/05/2008
19/05/2008
22/05/2008
23/05/2008
26/05/2008
27/05/2008
28/05/2008
29/05/2008

PM₁₀ anomalies under exceedance limit

No PM_{10} threshold value has been identified below which there is NO observed damage to health **PST** approx

Importance of anomalous PM₁₀ concentrations even if regulatory daily limit is not exceeded

RST approach to identify anomalous PM_{10} values

PM_{10} anomalies under exceedance limit

E.g. Rossellino monitoring station

Over-threshold $(>50\mu g/m^3)$ PM_{10} concentrations(due todust contribution)

Under-threshold $(<50\mu g/m^3)$ PM_{10} concentrations (due todust contribution)

Under-threshold $(<50\mu g/m^3)$ PM_{10} concentrations(probably due toanthropogeniccontribution)

Conclusions

The **RST_{DUST} algorithm** guarantees, in comparison with fixed threshold methodologies, **improved** performances both in terms of **reliability** (very low rate of false positives) and **sensitivity** (lower rate of missed identifications);

Being based only on satellite data at hand, RST_{DUST} is **intrinsically exportable** on whatever satellite sensor having VISible and TIR split-window capabilities

To quantify dust contribution, RST_{DUST} maps were used instead of forecast maps, as suggested by EC. This permitted us to recognize dust outbreaks with greater reliability

The RST application to ground PM_{10} time-series permits us to identify anomalous PM_{10} concentrations under exceedance limit. The comparison with RST_{DUST} products allows to evaluate the source of such under-threshold anomalies (natural or anthropogenic source).

1. Airborne dust identification from space: a new, MSG/SEVIRI-based method for air quality assessment (valerio.tramutoli@unibas.it)

Main References:

Marchese, F., F. Sannazzaro, A. Falconieri, C. Filizzola, N. Pergola, and V. Tramutoli (2017), An enhanced satellitebased algorithm for detecting and tracking dust outbreaks by means of SEVIRI data, Remote Sens., 9(6), 1–24, doi:10.3390/rs9060537. Sannazzaro F, Pergola N, Corrado R, Filizzola C, Marchese F, Mazzeo G, Paciello R, Tramutoli V (2014). A New Approach for Detecting and Monitoring Saharan Dusts from Space. Geoinformatics & Geostatistics: An Overview S1. doi:10.4172/2327-4581.S1-019 Sannazzaro F, Filizzola C, Marchese F, Corrado R, Paciello R, Mazzeo G, Pergola N, Tramutoli V, (2013). Identification

of dust outbreaks on infrared msg-seviri data by using a Robust Satellite Technique (RST). Acta Astronautica (ISSN:0094-5765). 93, pp. 64-70.

Thank you